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ABSTRACT

This research demonstrates the Galerkin FEM's ability to provide approximate sol-

utions of second order, nonlinear, one dimensional, two point boundary value problems.

The research concentrates on the development of linearization, iteration, and interpo-
lation strategies for the solution of differential equations containing the nonlinear u2

term. Additionally, various numerical considerations are explored. Over 2000 cases
were analyzed using various strategies and results detailing the efficacy of strategy com-
binations are presented. A linearization strategy known as quasilinearization consist-

ently yielded excellent approximate solutions of the nonlinear differential equations

investigated. It converged in a minimum number of iterations and was capable of solv-

ing equations which have large function order and activity over their specified domain.
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I. INTRODUCTION

Differential equations which describe natural phenomena are developed through the

application of the conservation principles of mass, momentum, and/or energy to a con-

tinuous media. After application of these principles to a small or differential element

of the media, the resulting equation provides a relationship between one or more deriv-

atives of an unknown function whose behavior is desired. The differential equation is

linear when it contains only derivatives of the function with either constant or inde-

pendent variable function coefficients. The solutions of linear differential equations are

unique based on their boundary and/or initial conditions. Various analytical and nu-

merical strategies have been developed to obtain these solutions. The finite element

method (FEM), which is used in this research, is one of the more popular and accurate
techniques that has been developed to solve differential equations.

When the coefficients of the derivatives are functions of the desired unknown, (that

is, the dependent variable), or when the dependent variable and/or its derivatives do not

appear linearly in the differential equation, then the differential equation becomes non-

linear and conventional analytical techniques usually do not work. Nonlinear operators

occur in a number of differential equations that describe the behavior of natural phe-

nomenon, e.g., the Navier-Stokes equations for fluid flow, a beam on an inelastic foun-

dation, the Falkner Skan equation, etc. This research investigates various strategies for

solving nonlinear, second order, one dimensional, two point boundary value problems

using FEM analysis. The Galerkin method of weighted residuals (MWR) with discrete

basis functions is the FEM technique used to compute approximate solutions of these

equations.

A. LINEAR DIFFERENTIAL EQUATIONS
Under most circumstances, this particular FEM provides excellent approximations

to linear differential equations of the form

Y u-f=O0, O<x<D(i1

with appropriate essential and natural boundary conditions where

* ' is the sum of arbitrary linear operators such as d ), ' (
dx dx2  ec

" x is the one-dimensional independent variable
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* u is the dependent variable of x

* f is an internal excitation to the system

* D is the domain of the differential equation

If the dominant operator in equation (1.1) is of odd order (non self-adjoint form), then
the Galerkin method doesn't work and the Petrov-Galerkin FEM must be utilized. The

Galerkin FEM transforms the differential equation into a system of linear algebraic

equations of the form

Au - F = 0 (1.2.a)

where

• A is an NxN coefficient matrix characterizing the operator(s) Ye, and N is the
number of system degrees of freedom (DOF) in the approximation.

" u is the Nxl FEM approximate solution vector

• F is an NxI FEM vector representation of the excitation functionf

This system of equations is readily solved by matrix algebra for the response variable,

u = A-'F (1.2.b)

where equation (1.2.b) implies the solution of equation (1.2.a) and does not mean that

A inverse is actually obtained.

Chapter II of the research demonstrates the Galerkin Method's ability to accurately

model linear differential equations, regardless of the magnitude of the solution, i.e.,
u = x2, x1, etc. Additionally, various methods of modeling the excitation function, f, are

examined.

B. NONLINEAR DIFFERENTIAL EQUATIONS

The remaining research examines various nonlinear, second order, differential

equations of the form

.Su+.Y(u)-f=O O<x<D (1.3)

with appropriate boundary conditions where all terms are as previously defimed and
du2'(u) is the sum of arbitrary nonlinear terms such as u d--, sin(u), u2, etc. Though this

research concentrates on the u2 nonlinear term, the principles presented should allow for

the adequate analysis of any nonlinear term that might be encountered.

2



The first step in the solution of equation (1.3) is linearization of the nonlinear term.

Once the equation is linearized with respect to the dependent variable, the Galerkin

FEM is used in an iterative fashion to solve a linear system of algebraic equations in the

form

Au + L*u - F= 0 (1.4)

where the coefficients of L" are functions of u evaluated at the previous iteration, de-

noted u,.,, and where subscripts i and i-I refer to the present and past iterations. To

begin the iteration process, a value is initially assumed for u,., and the system of

equations is solved for ui. The new values of u, and the input values of u,., at each node

are compared and tested against a convergence criteria. If convergence is not obtained,

the new value of u, is substituted back into the system of equations for u,. and the iter-

ation process continues until convergence is obtained. The final iteration yields the

FEM approximate solution of the nonlinear differential equation.

Chapter III provides the general principles and considerations which are involved

in solving nonlinear differential equations. Chapter IV utilizes these principles in the
solution of two different equations containing the nonlinear term u2. Final conclusions

are made based on the solution results as to which problem solving strategy yields the

most accurate approximation while using the least amount of computer time.

3



II. LINEAR APPLICATIONS OF THE GALERKIN FINITE ELEMENT

METHOD (FEM)

This section examines the Galerkin method of weighted residuals (MWR) using

discrete linear shape functions, that is the Galerkin FEM, as applied to linear second

order, one dimensional, differential equations, that is, two point boundary value prob-

lems. In section A, a general FEM procedure for the differential equation

u" - f(x) = 0 a < x< b (2.1)

with two boundary conditions, one at each end point of the domain, is presented. In

particular, several strategies for the FEM representation of the excitation function f(x)

are developed.

In section B, the various strategies for FEM representation of the excitation func-

tion are implemented on equation (2.1) for three different excitation functions. The

three f(x) functions were selected to provide the solutions of x1, x3, e to equation (2.1).

A. GENERAL FEM PROCEDURE

Here, a general procedure for the FEM formulation of equation (2.1) is presented.

The Galerkin FEM process transforms a differential equation into a system of linear

algebraic whose solution is an approximation to the exact solution of the differential

equation. The transformation requires the following three steps:

* Step 1: Form an N degree of freedom approximation, say i = Gu , where:
i is the approximate solution
GT is the lxN transpose vector of linear shape functions
u is the Nxl vector of the FEM solution, i, at each node

" Step 2: Form the Residual R = i" -f(x), where:
f(x) is the excitation function in the differential equation

* Step 3 Form the Galerkin integral equations fbGRdx = 0

The evaluation of these integral equations gives a system of N linear algebraic

equations whose solution is the approximation, i. The details of the FEM formulation

for equation (2.1) follows. Substitution of the residual R into the Galerkin integral

equation and separating terms yields

4



fb - fGf(x)x = 0 (2.2.a)

a7 a

From step 1, i" = (GTu) ' ' = (GT)"u. Substitution of this into the first term of equation

(2.2.a) and moving the second term to the right hand side yields

a, G )'dx u = JGf(x)dx (2.2.b)

Note that the term on the left hand side is the FEM representation of Y u = u" and the

term on the right hand side is the FEM representation off(x). The result of an inte-

gration by parts of the left hand side leaves

G(GT)Iu I' - J G'(GT)dx u = bGf(x)dx (2.2.c)
a f a

Each term is now evaluated individually.

Boundany Term, G(G T)'u I'

Differentiating the equation in step 1 of the formulation process yields (GT)'u -
Substitution of W' into the above equation and evaluating it at the upper and lower limits

gives

GI(b)af'(b )  Gj~a)af'(a)

G2(b) '(b) G2(a)u'(a)
G ' b - Ga'I,, .. (2.3.a)

LGN( b )'( b) J LGN( a)u-' (a) j

In equation (2.3.a), G, denotes that it is the linear shape function associated with the P
system degree of freedom (SDOF) at the Ph system nodal point. The ' a ' and ' b ' ar-

guments of G and u' are the endpoint values of the domain where these functions are

evaluated. These endpoin-. could be denoted by their system node identities, which are

1 and N, at the left and right end points respectively. With this notation, equation

(2.3.a) becomes:

5



GCA) '(.,) G,(l) '(I)

G2(N)'(N) G2(1)a'(1)

G I b -'I, ... (2.3.b)

LGNC!A)u'(N )J GN(l)u'(l)i

Due to the Kroenecker delta propertyl of the linear shape functions, all terms are equal

to zero except GN(UV)i'(N) and G,(l)i'(l). This yields a single vector comprised of the

natural boundary conditions at each end of the domain and is designated B where

-i'(a)

0

GU-'jb- Ga"'fiaB = .'" (2.3.c)

0

a'(b)

When natural boundary conditions, u', are present, they are used for the corresponding

i' in equation (2.3.c).

Differential Operator, fG'((GT)'dx u

The integral fG'(GT)'dx , associated with the u" operator, is reduced to the element

coordinate level for evaluation and becomes the 2x2 element a matrix

a=gD( f)'d (2.4.a)

where is the local coordinate axis, 1, is the length of the element, and g is the 2x1

vector of linear shape functions, given by

I G j) I i j

to i~6



1
=](24.1)

as shown in Figure 1. Differentiation of the g functions gives the 2xl g' vector,

' (2.4.c)

Substituting g' and (gT), into the integral of equation (2.4.a) gives

--- [ L L( _ )= T i + i

-g2 ---

V I

2

Figure 1. One Dimensional Linear Shape Functions

After construction in an element DO loop, the 2x2 a matrix for each element is then

distributed into the NxN system A matrix in accordance with a correspondence table,

7



which relates local DOF to system DOF, and where N is the number of system degrees

of freedom. Each element has two local degrees of freedom, LDOF 1 at the left end of
an element, and LDOF 2 at the right end of the element. The correspondence between

LDOF I and LDOF 2 of the Ph element and thefh system degree of freedom (SDOF J)
is J = (i- 1) + k where k is I or 2. Upon assembly of all the element matrices, we obtain

the system Au term.

Excitation, fbGf(x) dx
This term determines the forcing function (or excitation) vector F , that is

F = Gf(x) dx (2.5)

and is obtained by assembling the 2x1 element excitation vectors f. The f vectors can

be either modeled as a lumped approximation term in several different ways or integrated

exactly to yield a consistent forcing function. In this study, two lumped approximations

and the exact integration are developed and thereafter compared to determine which
yields the more accurate solution. A third approximation method is also described.

Although this third method is not used in the evaluation of the excitation function in this

chapter on linear systems, it is used in the next chapter on the nonlinear systems portion

of the research. It should be noted that as the number of elements approaches infinity
and the element length approaches zero, each approximation technique described below

yields the exact value of the excitation integral.

Midpoint Lumped Approximation of f(x)
The midpoint lumped approximation method for evaluation of the excitation

vector is the simplest and crudest approximation. This approximation involves
evaluating the function f(x) at the midpoint of the element and multiplying this
value by the element length. Half of this area (f(l/2)l.) is then placed at the left
element node and the other half at the right element node as illustrated in
Figure 2 on page 9 for three different arbitrary f(x). For the monotonically in-
creasing function in Figure 2.a, this method places too much area at the left local
nodal point (LNP) and not enough at the right. Conversely, when f(x) is
monotonically decreasing, too little area is placed at the left node while the right
node gets too much. When f(x) is concave over the element, too little area is
placed at each node (Figure 2.b), while for the convex case (Figure 2.c), each LNP
receives too much area.

* 1/4 - 3,'4 Lumped Approximation off(x)
This technique, which is a refinement of the previous one, evaluatesf(x) at the

quarter point and three quarter point of an element. Each value is multiplied by
half of the element length and the resulting areas are placed at the left and right

8



element nodal points respectively as shown in Figure 3 on page 10 for the same
three arbitrary functions. This method provides a better approximation than the
lumped midpoint technique, especially for the monotonically increasing flnction in
Figure 3.a, as it uses two points to capture the behavior of the curve instead of one.

f(x) AL f(x)k f GY)A

-,hpx ----f/ 2/ ,J 1 _61_

XX

(a) (b) (c)

Figure 2. Illustration of Midpoint Lumped Approximation

" Linear Approximation
This method approximates f(x) over the element in terms of the linear shape

functions where

f(x) Z f(x) =f(xl)(l--i-) +f(x 2)(-) (2.6)

as shown in Figure 4 on page 10. It overestimates the area for concave curves
(Figure 4.a) and underestimates for convex curves as shown in Figure 4.1). Note
thatf(x,) andf(x2) can be generalized to coefficientsf, and{f to give a better linear
fit of the curve. Also, the linear shape functions can be replaced by higher order
shape functions which provides an ith order approximation off(x) as opposed to
a linear one. This approximation method is not utilized for the evaluation of
forcing functions, but is used later in the nonlinear portion of the research to ap-
proximate other types of functions.

" Consistent
The consistent solution requires transformingf(x) into the element coordinate

system, f(4), by substituting x = a, + 4 into f(x) and performing the integration
over the lengths of the elements. The coordinate transformation is illustrated in
Figure 5 on page 11.

9



f(x) A x)A f(x)

,(~ .

(a) (b) (c)

Figure 3. Illustration of 1/4 - 3/4 Lumped Approximation

f (x)
X2 ) ----

f(x,)

f(x*) ' ( -

2 x 2 x

(a) (b)

Figure 4. Illustration of Linear Approximation
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rigure 5. Global to Local Coordinate Transformation

The integration for each of the above methods is performed on the clemecnt level,

producing the 2x1 r vector. The f vector flor each element is then distributed into the

Nx I system force vector F in accordance wvith the local to global nodal point cot re-

spoildcnic.

Substitution of A, F, and B into equation (2.2.c) yields a linear system of algebraic

equations in thc form

- Au = F-B (2.7.a)

The (F - B) term can be combined into a single vector designated F. leaving

- Au =Fin (2. 7.b)

which caai be solved for u, the FEM approximate solution at each nodal point.

B. RESULTS

lIn order to obtain specific results, the followving equations are analyzed over the

domain 0 < x < 2:

u" = 2; u(0) =0, u'(2) -4 Ueact=X 2  (8

u"' = 6x; u(0)=-0, u'(2) =12 Uexac = X 3  (2.9)

u" =12x 2 u40)=0, u'(2) =32 Uexac X 4 (2.10)



The excitation function in each of the above equations is evaluated using the three

method! previously described in II.A. The detailed formulation of these different f vec-
tors is shown in Appendix A for the forcing function of equation (2.9) where f(x) = 6x.
The other two f(x) are evaluated in a similar manner and the results for all three f(x)

functions are shown in Table 1.

Table 1. FORCING FUNCTIONS FOR VARIOUS F(X)
Midpoint Approx- 1,14 - 3,4 Approxi- Consistent

imation mation

I I

6x 31. 2 31, 4 3a, + I"I6xa + 1. a 3, 13 lo + 21]2

(+' 2 4 6611

(__ _+__ _ ) 2  (a + ' +)2 4 l .2+ 361~ ~ ~ ~ ~~3, a, +[ .) 6, 1 6al, +8l23,
12. L 6/ (j. ) I / L( + 4 ,/ . I°'" 8 '2 3°-

The FORTRAN programs and results for a ten element analysis of each equation

with the various forcing functions are provided in Appendix B. The first problem con-

sidered is that presented by equation (2.8). Due to the nature of the forcing function in

this equation, i.e., a constant, all three formulation options provide the same result. The

FEM approximation, shown in Figure 6, provided the exact solution at each nodal

point for a 10 element analysis.

The solutions of equations (2.9) and (2.10) were then considered. The different

forcing function formulations in Table 1 were used in solving these differential

equations. For clarity purposes, only a portion of the plots comparing each solution

process to the exact solution in an area of rapidly changing gradient are shown in

Figure 7 on page 14 (for u" - 6x) and Figure 8 on page 15 (for u" = 12x2).

The midpoint approximation method for F provides a solution which is larger than

the exact at each nodal point for both equations (2.9) and (2.10). The approximation

is worse for equation (2.10) in Figure 8 as the midpoint method provides an overesti-

12



U- 2: U(O)=O. U'(2)=4

LEGEND
5 U UX ~ U = 2 )

0.0 0.2 0.4 0.s 0.6 1.0 1.2 1.4 1.6 1.6 i.0
X

Figure 6. Comparison of Solutions for Equation 2.8 Using 10 Elemtents.

niation of the actual value of the excitation integral at each node due to its inability to

account for the quadratic nature of the forcing function.

Trhe quarter'thrce-q uarter point approximation of F provides solutions for equations

(2.9) and (2.10) that are quite close to the exact solution at each nodal point. This

technique provides a much better approximation of the area under the forcing ffbnction

curve because it discretizes the area into two independent sections, where as the mid-

point technique did not. Thus, this technique is quite accurate in approximating

excitation functions such as x2 which are monotonic and quadratic in nature.

The consistent formulation method provides the exact solution for both equations

(2.9) and (2. 10) at each nodal point, even when the solution curve has a rapidly changing

gradient such as u - x4 as shown in Figure 8. It was expected that this technique wvotld

provide the most accurate solution for all cases as it yields the exact area given by the

Galcrkin excitation integral.
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C. CONCLUSIONS

Linear shape functions provide an efficient and accurate interpolation for approxi-

mating second order, linear, one dimensional, differential equations using the Galerkin

FEM, regardless of the magnitide of the solution. Therefore, they are utilized

throughout the remainder of the research when approximating linear and nonlinear op-

erators of second order or less. An open question which remains is whether higher order

elements will work for nonlinear two point boundary value problems when linear ele-

ments do not.

Additionally, two important observations regarding the use of a consistent forcing

function analysis are made.

" The use of this technique in evaluating the excitation integral provides for a very
accurate solution process. Thus, this method is employed in the remainder of the
research whenever possible. In those cases where the integration cannot be per-
formed analytically, a Simpson's Rule approximation to the integral is used so that
the resulting error is kept to a minimum.

* For linear problems, this method provides very accurate approximations over large
domains using a minimum number of elements. To illustrate this point, equation
(2.10) was solved over the domain 0 <x < 10 using only two elements. The FEM
approximation provided the 'exact" solution at x= 5 and x= 10 as shown in
Figure 9 on page 17.
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III. ONE DIMENSIONAL SECOND ORDER NONLINEAR SYSTEMS

This chapter outlines various solution strategies which are later analyzed on their

ability to solve second order nonlinear differential equations of the form

.Tu+.'(u)-f(x)=O xeD (3.l.a)

where .' denotes linear operators and .() denotes nonlinear operators. Because

equation (3.l.a) is nonlinear, a closed form analytical solution is, in general, not possible.

Therefore numerical solutions are obtained by a variety of approximation techniques.

This chapter sets c I a general procedure, consisting of three steps, for obtaining nu-

merical solutions of equation (3.l.a). The three steps, when used with the Galerkin

FEM, have the effect of transforming the original nonlinear differential equation into a

system of linear algebraic equations.

The first step in the procedure consists of a 'linearization' of the nonlinear Y'(u)

term(s). Thus, Tf(u) is transformed to .'u where f'* can be obtained by a number of

different strategies, three of which are described in section I II.A.

Once the nonlinear differential equation, equation (3.l.a), has been transformed to

a linear differential equation of the form

Y9u + Y9lu =f(x) (3. .b)

the second step is associated with how the Yu term in equation (3.l.b) is evaluated in

the FEM Galerkin integral equations. A number of interpolation procedures are de-

scribed for this step in Section III.B.

The third step in the solution procedure is defining the iterative process by which a

solution of the linear algebraic equations developed by the Galerkin FEM is obtained.

In particular, the efficacy of the iterative method involves two considerations.

" the selection of an initial estimate to begin the iteration

" the methodology for subsequent iterations

Section III.C describes a number of iteration strategies.

Thus sections III.A, III.B, and III.C cover the three basic steps in the solution

procedure; that is, linearization, interpolation, and iteration. The selection of a partic-

ular strategy within each of these steps defines a specific solution procedure which can

18



be utilized in approximating the solution of equation (3.1.a). In addition to these

sections, section III.D discusses several numerical aspects which either affect, or are

used in evaluating, the efficacy of a solution procedure.

A. LINEARIZATION STRATEGIES

The first step in analyzing nonlinear equations using the Galerkin FEM is

linearization of the nonlinear term(s). Three different linearization strategies are inves-

tigated in this research. There is no implication that these are the only strategies that

exist.

1. Constant Linearization

The constant linearization method transforms the nonlinear term into a function

of u" where

.(u) ; .u = v (u) (3.2.a)

As discussed in Chapter 1, the solution process for nonlinear equations using the

Galerkin FEM is iterative in nature. On the first iteration, u" is set equal to an assumed

value at each node and for subsequent iterations, each nodal value of u" is based on the

FEM approximation. Thus, v(u') is a known function evaluated at each node and is

taken to the right hand side, leaving a linear equation of the form

u = f(x)- v (u) (3.2.b)

As an example, consider the nonlinear term u'u. The constant linearization technique

linearizes this term as v(u') = (u')'u', where (u')' is evaluated using finite difference

techniques.

2. Classical Linearization

The classical linearization strategy linearizes the nonlinear term as a known

function coefficient multiplying the dependent variable where

.2'(u) Y = (m(u*)) u (3.3.a)

which in a sense maintains the functional nature of the dependent variable by allowing

it to be kept on the left hand side of the differential equation in a linear fashion. As in

the constant linearization strategy, m(u') is a known function coefficient where the values

of u" are assumed for the first iteration and are based on the FEM approximation for
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subsequent iterations. Substituting the results of equation (3.3.a) into equation (3.l.a),

the linearized differential equation takes the form

YfU + Hmu -)) U =- f W) (3.3.b)

Using the nonlinear term given as an example in the previous section, that is u'u, the

classical linearization technique provides two alternatives. The first is (m(u')) u = (u')'u

which keeps the full effect of the dependent variable, u. The second is (m(u')) u = u'u'

which maintains the full effect of the derivative term, u'.

3. Quasilinearization

Quasilinearization is covered extensively by Bellman and Kalaba in [Ref. 1: p.

361 where the nonlinear term is set equal to q(u) and linearized as

(u) -O9u= q (u) + (u - u) q'(u )
- (q'(u*)) u + ( q (:, ) - u*q'(u*)) (3.4.a)

Comparing equation (3.4.a) with equations (3.2.a) and (3.3.a), it can be seen that

quasilinearization is a combination of constant and classical linearization with the coef-

ficient functions determined in a different manner. Substituting the results of equation

(3.4.a) into equation (3.1.a), the linearized differential equation becomes

.Yu + (q'(u*)) u = f(x) - ( q (u*) - u*q'(u.)) (3.4.b)

As an example, consider the u2 nonlinear term. The quasilinearization technique defines

q(u) - u, from which q(u') = (u')' and q'(u') = 2u'. Substitution of these functions into

equation (3.4.a) yields a linearization of the form Y'u = 2uu - (u')2 . As u and u begin

to approach the same value at each node during the iteration process, .'u begins to

approach the original nonlinear term, namely u2

B. INTERPOLATION STRATEGIES

The second step of the solution process is the evaluation of the Galerkin integrals.

Based on the type of linearization strategy utilized, one or both of the following integrals

are obtained.

Linearization Vector: J G h(u )dx (3.5.a)
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Linearization Matrix: JGGT h(u*)dx u , (3.5.b)

The constant linearization strategy results in a linearization vector where h(u') in

equation (3.5.a) is replaced by v(u') from equation (3.2.a). The classical linearization

technique yields a linearization matrix where h(u') in equation (3.5.b) is replaced by

m(u') from equation (3.3.a). The quasilinearization method utilizes both integrals where

h(u') becomes (q (u') - u'q'(u')) in equation (3.5.a) and q'(u') in equation (3.5.b). Since

u" is derived from an FEM approximation utilizing linear shape functions, it varies line-

arly between nodes over each element. Thus, when equations (3.5.a) and (3.5.b) are re-

duced to the element level for evaluation, there are numerous interpolation strategies

available to approximate h(u'). Here, a few strategies are discussed for each of the above

integrals.

1. Linearization Vector

Reducing the integral in equation (3.5.a) to the element level yields

f 'g h(u*)d (3.6)

which is quite similar to the forcing function integral discussed in Chapter II. Three

interpolation techniques similar to those used for the forcing function are examined in

this research. The integral in equation (3.6) yields a 2xl element vector denoted as f';

the "* superscript meaning that the vector changes with each iteration as the values of

u" are updated. The f" are then distributed into a system linearization vector denoted as

F" in accordance with the local to global nodal point correspondence.

a. Midpoint Lumped Approximation

This method evaluates h(u') at the midpoint of the element and brings this

value outside the integral as a constant. Since u" varies linearly over the element, its

value at the midpoint of the element is simply the average of the values of u" at the two

nodes of the element, (u,), and (i4t), Substituting this into equation (3.6) leaves
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2 1. e

L _j (3.7)

f=h ( (u)i + (u*+)i .o

2 l

where ho denotes that the function h is evaluated at the argument of ().

b. 114 - 314 Lumped Approximation

This method takes the h(u*) term inside the shape function vector yielding

--o .[ ,)....) (3.,.a)
1. h(u)-j

0 L ~u e J

In the first term, u" is evaluated at 1,14 while in the second term it is evaluated at 314/4.

These values are again easily determined due to the linear variation of u' over the ele-

ment and are given by equations (3.8.b) and (3.8.c).

u*( le _ (uj )i + •L •(**i~(-k- =( + - . ((u4+,) - (uj) )(38b
3 /( 3 4 (3.8.b)

4 *i 3

+ (uJ)+T (uj+I)i

Substitution of these expressions for u* into equation (3.8.a) gives
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h(

* ~~ flh 4 Ui 4 +I ill 4
(3.8.a

where again, h( denotes that the function h is to be evaluated at ().

c. Linear Approximation

This method evaluates u" in a linear manner over the entire element as a

function of the element coordinate where

= Iu~( - {.) + (U;+A)(-- (3.9.a)

Substitution of this expression into equation (3.6) yields

Since h(u') is no longer a constant but a function of t, this integral must be evaluated

for each specific h(u'). Examples of each of these approximations is provided in Ap-

pendix C.

2. Linearization Matrix

At the element level, the integral in equation (3.5.b) becomes

f 1.
fggT h(u)dt (3.10)

which is similar to the Galerkin FEM differential operator integral discussed in Chapter

II, with the gg T term producing a 2x2 element matrix. In order to preserve the 2x2 na-

ture of this matrix, h(u') must remain as a single term multiplying each term in the ma-

trix. Two techniques for evaluating this integral are examined in this research. The
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resulting 2x2 element matrix is denoted as 1 where the ' superscript again indicates that

the matrix is changing with each iteration. These are then distributed into the system

linearization matrix L in accordance with the local to global nodal point correspond-

ence.
a. Midpoint Lumped Approximation

This method evaluates u' at the midpoint of the element using the same

process as in the linearization vector analysis and brings h(u') outside the integral as a

constant. Substitution of this expression into equation (3.10) gives

1" = h (uj )i + (uj+t )i f1d S1-d

= h( (uj) + (U+) )[ ?1
where h( ) denotes that the function h is to be evaluated at ().

b. Linear Approximation

This method transforms u" into a linear function of the element coordinate

as given by equation (3.9.a). This expression is substituted into equation (3.10) giving

h((u, ).(-I- + (u,+n) i( ))d4 (3.12)

As for linear evaluation of the linearization vector, equation (3.12) must be evaluated for

each h(u'). An example of each of these approximations is provided in Appendix D.

C. ITERATION STRATEGIES

Having evaluated the Galerkin integrals and developed a set of linear algebraic

equations, the last step in the solution process is the determination of an iteration

strategy. The main goal of an iteration strategy is to obtain a convergent approximation

in a minimum number of steps while at the same time, keeping the computational effort

of the iteration process to a minimum. Two of the factors which control the rate of

convergence within a specific linearization strategy are

24



" how close the initial assumed values of u" are to the actual solution

* the nature in which the FEM solution , i, obtained at the end of each iteration, is
utilized to obtain a value of u" to begin each of the subsequent iterations

1. Initial Iteration
In order to begin any iteration process, an initial estimate, or guess, must be

made as to the value of the variable which is to be determined. The relative accuracy
of this guess with respect to the true solution of the differential equation greatly affects

the ability of the solution process to converge as well as its rate of convergence. If the
starting point for the iteration process is too far away from the actual solution, the

likelihood for divergence or convergence to a nonsolution of the differential equation is
very high.

The first step in formulating an initial iteration strategy is developing an idea
as to what the activity range of the solution of the differential equation might be, i.e.,

how much and how quickly is the dependent variable changing over the prescribed do-

main. Since the solution is not known, this information must be obtained from the

boundary conditions, the domain length, and insight as to the physics of the system.

Two possible combinations of boundary conditions exist for two point bound-

ary value problems.

" Essential-Essential (E-E), where the magnitude of the dependent variable is speci-
fied at each end of the domain

" Essential-Natural (E-N), where the magnitude of the dependent variable is specified
at one end of the domain, and the slope or rate of change of the dependent variable
is specified at the other end.

The essential-essential combination provides information as to the probable activity
range of the solution over the system domain, which is referred to as function order in

this research and is defined below.

Function Order provides a relative magnitude of the range of values in the solution
function as indicated by two essential boundary conditions. This relative
magnitude is determined by writing the values of the essential boundary
conditions in power ten exponent form and then taking the quotient of the
maximum value over the minimum value. When the minimum valued
boundary condition is 0.0, it should be written as I x 100 in order that the
quotient does not become undefined. The magnitude of the exponent in this
quotient defimes the function order of the solution while the decimal value
provides a ranking of how different function orders of the same magnitude
compare. For example, take a differential equation which has boundary
conditions of u(0) = 0 and u(2) = 25. These are written in power ten expo-
nent form as u(O) = 1.00 x 100 and u(2) = 0.25 x 102. The quotient of these

25



two values is 0.25 x 10. Thus, the solution function is said to have a func-
tion order of two.

When an E-N boundary condition combination is specified, determination of

the dependent variable activity range is not as straight forward as in the E-E situation.

Instead, the activity range must be determined from a knowledge of the physics of the

system as well as the actual values of the specified boundary conditions. The importance

of properly estimating the activity range of the dependent variable cannot be overem-

phasized as this estimation is utilized in determining an initial iteration strategy, which

is the most critical step in the solution procedure.

When the function order is zero or one, or the activity range is determined to

be small based on the physics of the system, the magnitude of the dependent variable

does not change appreciably over the prescribed domain. Thus, a reasonable estimate

of the dependent variable for the first iteration would involve utilizing the essential

boundary condition value(s). To examine the validity of this line of reasoning, the fol-

lowing initial iteration strategies are utilized in the present research when the solution

has a function order of one or less.

* u' set equal to the value of the left essential boundary condition.

" u" set equal to the value of the right essential boundary condition

• u" set equal to the average value of the two essential boundary conditions

When the function order is greater than one, there is a chance that utilization

of any of the above criteria for the initial iteration values could result in divergence or

convergence to a nonsolution of the differential equation. Any number of guesses could

be made for the initial iteration values, but the chances of a random guess providing a

convergent solution of the differential equation are quite low. Instead, a systematic

approach given by the following four steps is suggested.

" Examine the physical system to which the differential equation applies and deter-
mine which terms on the left hand side of the equation tend to dominate.

* Neglect the nondominant term(s) and solve the equation for the dependent variable
by any means possible, i.e., separation of variables, undetermined coefficients,
successive integration, etc.

" Determine the value of the dependent variable at each node and let these be the
values used in the initial iteration.

" If divergence results, reexamine the physical system and reevaluate the dominance
of each of the terms. Then repeat steps two and three.
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The process of determining initial iteration values that lead to a convergent solution can

be very time consuming and frustrating. But, in most instances when the function order

is greater than one, the selection of initial iteration values that are 'reasonably close' to

the actual solution is crucial if a convergent solution is to be obtained.

To amplify the above guidelines, consider a one dimensional constant cross-

sectional area heat fin with nonlinear conduction given by

k(T)T" - c,(T- T.) = 0 (3.13)

where c, is a constant based on the fin geometry and the convection coefficient, and T.

is the temperature of the convective fluid. When the fin is short or the value of k(T) for

the given range of operating temperatures is much greater than c1, conduction tends to

dominate ard the convection term, c,(T- T.,), is negligible. A value can then be as-

sumed for k(7) based on the the physical system and boundary condition temperature(s).
The equation thus becomes linear and can be integrated twice to yield T'(x). T" is then

determined at each node which provides the values used for the initial iteration.

When the constant c, is much larger than k(T), the convection term tends to

dominate and conduction can be neglected. Thus, T" is set equal to T. at each node for

the initial iteration. In those cases where conduction dominates over one half of the

domain and convection over the other, T" can be determined by using a combination of

both these initial iteration strategies. The process of determining an initial iteration

strategy is further developed in IV.A.5.

2. Subsequent Iterations

After the initial values of u" are determined, the next step is to develop an iter-

ation procedure for subsequent u" values which will result in convergence with the least

amount of computational effort. To aid in this development and subsequent discussions,

the following notation is utilized.

* (u'), is the value of u used in the iteration process where j denotes the node number
and i is the iteration number.

* (ai), is the value of u returned by the FEM approximation where j and i are defined
as above.

Two different strategies for determining u" are investigated in the present research.

a. Previous Value Strategy
This method takes the value of i from the previous iteration and sets it

equal to u" for the next iteration process where

27



(uj9)i = (3.14.a)

This is the simplest iteration scheme, but does not take into account how U_ is changing

during the iteration process.

b. Average Value Strategy

This method uses the average value of u from the last two iterations yielding

(u+)i = (uA- + (u),-2 (3.14.b)
2

This method should enhance convergence when i is oscillating about the final conver-

gent solution while at the same time not adversely affect those situations where i is

converging monotonically.

c. Additional Strategies

Numerous other strategies can be utilized in an attempt to increase the rate

of convergence. The following are not investigated in this research but are presented as

topics requiring further research.

" K-step Strategy - This method takes into account k previous iterations where

S(ia,. 1 + . + + (..).-k
(uj ) = k(3.14.c)

* Weighted Average Strategy - A method which assigns a weighting factor to each
iterative value of 'u where

( = w1 (a)A- 1 + w2(u)- 2  (3.14.d)

wI + W 2

The objective is to find the optimum combination of weighting factors, w, and w2,
that yields the minimum number of iterations.

" Weighted K-step Strategy - A combination of the previous two strategies where

= w,(')l, + w2(j)t_2 + .' + Wk()i k  (3.14.e)
(u, k "I14e

Zwn

* Rate of Change Strategy - This method would require using some from of a Taylor
series expansion to model how i changes from iteration to iteration.

D. NUMERICAL CONSIDERATIONS

The following numerical aspects are considered in evaluating the ability of each

solution procedure to provide a convergent solution of the nc.linear differential
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equations that are investigated. Again, a solution procedure is a specific combination

of linearization, interpolation, and iteration strategies.

I. Convergence/Divergence

For a convergent solution, the absolute value of the difference between

(ij) and (ii),_. at each node decreases as the number of iterations, i, increases. In order

to achieve the best approximation for a given number of elements, it is desirable to let

the maximum value of I (i.) - ( )I I at all nodes reach some minimum value before ex-

iting the iteration process. Thus, the following percent difference convergence criterion

is utilized: convergence is reached when the absolute value of the maximum difference

between (i)), and (i i),_ at any node divided by ( j), at the same node it less than .0001

(.01%). This is shown mathematically in equation (3.15) and is but one of many con-

vergence criteria that could be utilized.

Convergence Criterion: I'MAX < .0001 (3.15)

The solution procedure is considered a failure if any of the following situations occur.

" convergence does not occur within 200 iterations

* divergence occurs, i.e., u increases without bound as the number of iterations in-
creases

* convergence to a nonsolution of the differential equation

2. Critical Number of Degrees of Freedom (DOF)

In some instances, especially when the function order is greater than two or the

activity range is large, there may be a specific or critical number of DOF below which

the solution procedure will not converge. To examine this phenomenon, each solution

strategy is initially evaluated using three DOF i.e., two elements. The number of DOF

is then increased until either a grid independent solution is obtained or the number of

DOF exceeds 100; and a critical number of DOF, if it exists, is determined.

3. Stability

Stability in numerical analysis applications is based on the approximation

method's ability to converge as it relates to the time and displacement discretization that

are utilized. For example, the finite difference explicit method is stable for r < I where
At 2

(A), while the Crank-Nicholsen implicit method is stable for any value of r, i.e.,

unconditionally stable. For this research, three types of stability are defined.
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" Unconditional Stability - There is no critical number of DOF required to guarantee
a convergent solution.

" Conditional Stability - There is a critical number of DOF below which a convergent
solution .dnnot be obtained.

" Unstable - The solution process diverges regardless of the number of DOF utilized.

4. Multiplicity of Solutions

Nonlinear differential equations do not necessarily have a unique solution. The

equations utilized in this research were developed based on known solutions. When a

solution different from them is obtained, that solution is checked at two different points

in the domain by passing a parabola through the point in question and two adjacent

points. If the equations developed from both of these parabolas satisfy the differential
equation, the solution procedure is considered to have provided a valid approximation.

5. Boundary Condition Effects

Two point boundary value problems require a boundary condition at each end.

Two combinations are valid; either an essential (Dirichlet) boundary condition at each

end or an essential at one end and a natural (Cauchy) at the other. The effect that each

of these combinations has on the performance of each solution procedure is investigated.

6. Computational Efficiency

This research defines the most computationally efficient solution procedure as
the one which provides the most accurate results for the least amount of computer time.

CPU time by itself though is not an effective measure of efficiency. For example, a

solution process that uses two elements will take much less time to run than one with

40, but the 40 element solution is likely to be much more accurate. There should be

some critical number of elements for a specific solution procedure beyond which the in-

crease in CPU time for the additional calculations is not matched by a proportional in-

crease in solution accuracy.

The different solution strategies in this research are compared using a factor

defined as

CPU - CPU x average % error (3.16.a)

CPU is the amount of computer time (in seconds) required to complete the iteration

process. A timing subroutine installed in the FORTRAN solution program starts when
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the iteration process is entered and stops when it is exited. Average % error is the av-
erage percent difference between the FEM approximation and the exact solution given

by

N

ZI1% errori
avg % error = i=1 N = number of system (3.16.b)

N degrees of freedom

As the CPU time increases due to an increase in the number of elements, the
percent error should decrease and approach zero. Therefore, the solution strategy
yielding the minimum CPU' is defined as the most computationally efficient for a given

equation and nonlinear operator.
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IV. APPLICATIONS

A. PRELIMINARIES

1. Equations, Domains, and Boundary Conditions

This chapter evaluates the performance of various combinations of the

linearization, interpolation, and iteration strategies previously developed in solving sec-

ond order, nonlinear, one dimensional, differential equations containing the u2 nonlinear

term. In order to investigate the effect of the many numerical considerations described

in the preceding chapter, two nonlinear differential equations over three domains with

appropriate essential and natural boundary conditions are solved. The differential

equations considered were

u" - u 2 = 6 - 9x4  uex t = 3x2  (4.1)

U" + U2 = 60X + 100X6  Uexac = 1ox 3  (4.2)

Domains and Boundary Conditions

" Domain 1: O<x<1
Eqn. (4.1) u(0) = 0, u(l) = 3 or u'(l) = 6
Eqn. (4.2) u(O) = 0, u(l) = 10 or u'(l) = 30

* Domain 2: 0<x<2
Eqn. (4.1) u(0) = 0, u(2) = 12 or u'(2) = 12
Eqn. (4.2) u(0) = 0, u(2) = 80 or u'(2) = 120

* Domain 3: O<x<5
Eqn. (4.2) u(0) = 0, u(5) = 75 or u'(5) = 30
Eqn. (4.2) u(O) = 0, u(5) = 1250 or u'(5) = 750

In all cases the left end point of the domain has an essential boundary condition. Either

an essential or natural boundary condition is provided at the right end of the domain in

order to investigate the effect of the two different boundary condition combinations,

namely essential-essential (E-E) and essential-natural (E-N) as discussed in III.D.5.

Equations (4.1) and (4.2) were developed by starting with a known solution,

u,,, and working backwards to form a second order nonlinear differential equation.

The equations were kept simple, i.e., only one linear and one nonlinear term, due to the

number of solution procedures that required evaluation, as well as the many numerical

considerations involved. Still, equations (4. 1) and (4.2) are viable representations of two
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engineering phenomena that are described by second order differential equations, such

as

* An axially loaded bar embedded in a nonlinear elastic medium as shown in
Figure 10 on page 34.

" A constant cross-sectional area heat fm with internal heat generation and nonlinear
convection as shown in Figure I 1 on page 35.

2. Related Engineering Phenomena

a. Bar Problem

Consider the bar problem of Figure 10 subjected to distributed force p(x),
embedded in a nonlinearly elastic media which exerts an opposing distributed force

proportional to the square of the displacement, u. A free body analysis of a differential

element yields

F(x) + dF(x) + p(x)dx - F(x) - U2 (x)dx = 0 (4.3.a)

Cancelling the F(x) terms, taking the applied excitation p(x) to the right hand side of the

equation and dividing by dx gives

dF(x) u2(x) -p(x) (4.3.b)
dx

From solid mechanics, the following relations are known,

F = aA (4.4.a)

o =E (4.4.b)

du (4.4.c)
dx

where F is the axial force, o is the axial stress, A is the cross-sectional area,-t is the

strain, and E is Young's Modulus. Substitution of equations (4.4.c) and (4.4.b) into

equation (4.4.a) provides a relation for the force as

F = EAu' (4.4.d)

Differentiating equation (4.4.d) with respect to x yields

dF - EAu" (4.4.e)
dx
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Substitution of equation (4.4.c) into equation (4.3.b) leaves

EAu" - u -p(x) (4.5)

whiich is similar in form to equations (4.1) and (4.2), if the stifiiess, E3A, is sct equal to

unity.

W X~n onlin car elastic material

RX), F(x) + dF-(x)

Figure 10. Axially Loaded Bar Einbedded in a Nonlinearly Elastic Material

b. hfeat Fin Problem

Now consider the heat fin problem or Figure I11 on page 35 where q(x) is

the volumetric hcat generation/unit length and the heat transfer cocficient, li, is a linear

function of the temperature, T, that is h = aT. An energy balance on the fin diffiential

element yields

qcond - q(x)dx - (q,,,, + dqc0nd) - dqconv = 0 (4.6.a)

Cancelling the q 0, terms, dividing by dx, and rearranging terms yields

dx dx

T'he following relations are known from heat transfer principles,
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qc~md ~c dT(4.7.,a)dx

(OP hA(T'- 7-, (4.7.h)

'~here Ac iq the cross-scictionaI arca of the fin and is constant, A, is the sutice rca of

the (iii and is written as lPx where P is the perimeter of the heat fin. 7' is the amient

temperature of' the convective media, and k is the thermal conductiv'ity coefficient.

Substitution of' equations (4.7.a) and (4.7.b) into equation (4.6.b) and performing the

appropriate di~ikrcntiatioii yields

kACT" - hiilT7- 'F.,)= (x

Lctting h = aT, T- = 0 , and dividing through by kA, yicids

7-" - " 11 - (4.81')41(
kAc A

wvhich is sin-ilar to equations (4.1) and (4.2) if coefficient (allfkAj) is set equal to unity.

~1l(T) =aT

4(x)

4 4(x)

qcond Jo *112'ii nd + dqcond

I-dx 1

Figure 11. f feat Fin W'ith Nonlinear Coinvection
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3. Function Order and Domain Nondimensionalization

The exact solutions on which equations (4.1) and (4.2) are based, and the three

domains of these equations previously described, were judiciously chosen to provide in-

formation as to the effect of function order on the performance of the solution proce-

dures investigated in this analysis. The function order of each equation was determined

over each domain based on the specified E-E boundary conditions and is provided in

Table 2.

In order to determine whether an advantage is gained by the

nondimensionalization of a domain, the following investigation was undertaken for both

equations over domains two and three with equation (4.1) over domain three provided

as an example. In this case, the dimensional variable x was replaced by the nondimen-

sional independent variable P = x15. Since d/ = dx/5 and x = 5j/, equation (4.1) was

transformed to

u" - 25u 2 = 150 - 140625u 4  0< 1 <I

where differentiation now is with respect to P1. Analysis of each nondimensionalized

equation established that the transfer of 'domain activity' to 'differential equation ac-

tivity' did not result in any computational gain.

Table 2. FUNCTION ORDER OF EQUATIONS (4.1) AND (4.2)

Equation Domain Function Order

One 1
(4.1) Two 2

Three 2

One 2
(4.2) Two 2

Three 4

4. General Solution Procedure

Subsequent analyses using the solution procedures discussed next, show that the

efficacy of any particular solution procedure depends strongly on the function order of

the problem being solved. The general solution procedure consists of the three steps;

36



linearization, interpolation, and iteration; shown in Figure 12 on page 38. First,

equations (4.1) and (4.2) are linearized using the linearization strategies developed in

III.A. Secondly, an interpolation strategy developed in III.B is used with the Galerkin

FEM and the linearized differential equation is transformed into a set of linear algebraic

equations. Finally, these algebraic equations are solved iteratively using various com-

binations of iteration strategies developed in III.C. The results of each solution proce-

dure, where a solution procedure is a particular set of selected strategies, are then

compared and evaluated based on their performance in approximating the solutions of

equations (4.1) and (4.2).

5. Initial Iteration Strategy

The initial iteration strategy is the weak link in the overall solution procedure.

For function order one problems, the initial iteration strategy is simply to utilize the es-

sential boundary conditions as described in III.C.l. This is the strategy adopted for

equation (4.1) over domain one, as well as equation (4.2) over the same domain because

the latter problem becomes function order two only at the right boundary point of the

domain.

Another initial iteration strategy is utilized for equations (4.1) and (4.2) over

domains two and three because their function order is greater than one. The physical

systems to which equations (4. 1) and (4.2) apply are generic in nature and do not provide

the necessary information for determining which of the terms on the left hand side of the

equation dominate the behavior of the system. However, since each of these equations

is based on a known solution, the terms on the left side can be written as specific func-

tions of x. This information is utilized to devise an initial iteration strategy for each

equation over domains two and three based on the indicated dominance of the linear and

nonlinear terms. Normally, the solution of the nonlinear differential equation is un-

known. In these cases, the physical system must be scrutinized and a determination

made as to which processes and their corresponding operators dominate over each part

of the domain. Having once assessed the dominance of each operator over various parts

of the domain, the following strategies can be utilized to generate the initial iteration

values.

* Where the u" dominates, the initial iteration vector is obtained by solving
U" =f(x).

* Where the u2 dominates, the initial iteration vector is obtained by solving u2=f(x)
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SOLUTION PROCEDURE

NONLINEAR DIFFERENTIAL EQUATION

ylu + T(u) -f= 0

LINEARIZATION
STRATEGY

LINEAR DIFFERENTIAL EQUATION

.V*u ;-f= 0

FEM WITH
INTERPOLATION

STRATEGY

RECURSIVE LINEAR ALGEBRAIC EQUATIONS

(A + A*i-l)ui - F* - F = 0

INIT. ITER. STRAT.
SUBS. ITER. STRAT.
(i = ITER. C'NTER)

iin  CONVERGED SOLN
AFTER n ITER'S

Figure 12. Solution Procedure for Nonlinear Differential Equations

38



In equation (4.1), u,, = 3x' which yields u" = 6 and u2 = 9x". These functions

are plotted in Figure 13 on page 40 for the domain 0 < x < 2 and in Figure 14 on page

41 for the domain 0 < x < 5. From Figure 13, the u" term is slightly more dominant

than the u2 term over the first half of the domain. Over the second half of the domain,

the u2 term is clearly dominant. Therefore, an appropriate initial iteration strategy is to

utilize a procedure which neglects the u2 term in determining the initial values of (u,')0
over 0 < x < I and neglects the u" term over 1 : x < 2. The first part of the initial value

procedure involves integrating equation (4.1) twice without the imposition of any

boundary conditions. The second part requires taking the square root of the right hand

side of equation (4.1). Thus, the initial iteration values used in solving equation (4.1)

over domain two are determined using equation (4.9).

• .3x2_- 3 x6 0<x<l
(u9) = (4.9)

.9x. -6 1<_x<2

From Figure 14 it is apparent that the u2 term dominates over a majority of the domain.

Thus, the u" term is completely neglected and the initial iteration values are determined

using equation (4.10).

(Ui*)o =f ,/I 9x"- 7 [  (4.10)

Nonlinear differential equation (4.2) was developed using u.o., - l0x3 which

yields u" = 60x and u2 = 100x'. These functions are plotted in Figure 15 on page 42 for

a domain of 0 < x < 2 and in Figure 16 on page 43 over domain 0 < x < 5. Examination

of Figure 15 shows the u" term slightly dominating the u2 term over the first half of the

domain and the u' term clearly dominating over the second half of the doma.n. Thus,

the same procedure for determining initial iteration values as was utilized for equation

(4. 1) over domain two is employed and the results are given by equation (4.11).

I lo, I 00 X

NO { -+5 6  (4.11)
,6o + 1002 1-
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EQN(4.1) U"-U**2=6-9X**4

2- LEGEND
0 U11=6

04



oEQN(4.I) U"-U**2=6-9X**4

LEGEND

00

C

C11

0
0-

0 . .2. .4.5.

0x

0iue1. Dmnneo em nEqain(.1 vrDmi he
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EQN(4.2) UP+U**2=6OX+IOOX*6

LEGEND
o J"=60X

t4=tOXij

0 . . . . . . . . . . . . . . . . . . . . . . .

0 .05;. " .

0x
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0
0
0
0-

EQN(4.2) U"+U**2=60X+1OOX**6
0f

LEGEND
o3 U"=60X

- U,2=fOOX 6

0
0
0
0

C l

,,,=3

0

0-

0
0
0_
0

0-

*0

*0

0 01.2.3. .5.

0X
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Over the domain 0 < x < 5, Figure 16 clearly shows the domination of the u' term over

a majority of the domain. Therefore the u" term is neglected and the initial iteration

values are determined using equation (4.12).

('6,)o = ,6 + 100x6 (4.12)

The efficacy of the above initial iteration strategies was confirmed by the analyses which

were undertaken.

B. CONSTANT LINEARIZATION

1. Problem Formulation

The constant linearization strategy, described in III.A.1, transforms the nonlin-
ear term, u , into a constant linear term as shown in equation (4.13)

u2..*u = (u.) 2  (4.13)

where u' is determined as outlined in 11I.C. This process results in a linear differential

equation of the form

u" = (u) 2 +f(x) x e D (4.14)

where '+ is for equation (4.1), '-" is for equation (4.2) andf(x) represents the excitation

function in each equation. The Galerkin FEM formulation process outlined in Chapter

II transforms equation (4.14) into

G(GT)'uI b - fG'(Gr)'dxu f, G(U )2dX + fJGf(x)dx (4.15)

where a and b in the first term represent the value of x at the left and right boundary

of the domain, respectively. The left hand side of equation (4.15) is similar to that of

equation (2.2.c) and upon evaluation yields B - Au, where the vector B is only present

when a natural boundary condition is specified. The integrals on the right hand side are

now evaluated.

Linearization Vector, fDG(u') 2dx

This integral is evaluated as outlined in II1.B.1 where h(u') in equation (3.6) is

set equal to (u') 2. The detailed formulation of the 2x1 f" element vectors for the three

different interpolation strategies is given in Appendix C with the final results shown in
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Table 3 on page 45. The 2xl f vectors are then distributed into the system linearization

vector, F", in accordance with the local to global nodal point correspondence. The F"
vector continuously changes during the iteration process as the values of u" are revised.

Table 3. CONSTANT LINEARIZATION ELEMENT VECTORS

Interpolation f.
Strategy

Midpoint ((u) + (u- 1 ), 2
Approximation 2 )41j -2-

1/4 -3 4__ 3 3. (u,), + ._1 (U'..,),2

1,14 -3,,4 - +
Approximation 2 (u,) + T (u +,))2

(l + (U)(,++

Linear 4 6 12
Approximation (u,) + ) (u'. ,)

12 6 4

Excitation, fDGf(x)dx

Transforming x to the element coordinate system, , the element integral for f
becomes

f= 'gf(al + )d (4.16)

where a, is the distance from the origin of x to the origin of of the element for which

f is being evaluated. Equation (4.16) is evaluated using the consistent technique de-

scribed in II.A, which is detailed in Appendix A, where f() is replaced by the appropri-

ate excitation function in equations (4. 1) and (4.2). The resulting 2x1 element excitation

vectors are presented in Table 4 on page 46. The f vectors remain steady (constant)

during the iteration process and are distributed into an Nxl system force vector, F, in

accordance with the local to global DOF correspondence.
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Table 4. ELEMENT FORCE VECTORS FOR EQUATIONS (4.1) AND (4.2)
f(x) f

6 aA_[] 9~. 6al[ - -1 ] 9[1] 3. ._!4 0

30 o/,[] + 1o, [ ] + 50a6I{] + 1oo00,2 [] + 125LcX,4 [] +
60x + I 00x6  1 O(14[]+5.j 00 ,6F11 +2IiI" '1

4____ 5O~3I 7 "'6J 1
_o___,___oo___; +,oc ,l4 ] .U,° :, , .

Final FEM Equations

Substitution of the matrix and vector equivalents for each integral into equation
(4.15) yields a system of equations given by

B-Au=F +F (4.17.a)

where the ± sign in equation (4.15) is incorporated into F. The natural boundary con-
dition vector B, when present for an E-N problem does not change during the iteration

process and is taken to the right side and subtracted from F yielding Fm, where the m
subscript indicates that the excitation vector is modified for the given natural boundary

condition. The system of equations then takes the final form of

-Au- .= + F m (4.17.b)

where subscripts i and i - 1 refer to the iteration counter. Equation 4.17.b is solved it-

eratively for u, with F" changing after each iteration, until convergence is obtained.

2. Results

a. General

Equations (4.1) and (4.2) were each solved over domain one using 24 dif-
ferent solution procedures while 12 different procedures were utilized for both domains

two and three. The FORTRAN programs utilized for the constant linearization strategy

are contained in Appendix E. A summary of the strategies utilized in each solution

procedure is shown in Table 6 on page 49 and Table 7 on page 50 for equation (4.1),
and Table 8 on page 51 and Table 9 on page 52 for equation (4.2), with the following

performance information provided in the results portion of each table.
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" Convergence (III.D.l)

" Stability (III.D.3)

" Number of iterations required to obtain convergenc

" Average percent error (III.D.6)

" CPU* (III.D.6)

The results for each solution procedure over each of the domains were obtained using

the number of elements shown in Table 5. Though these number of elements are not

necessarily the number required to obtain a grid independent solution for each solution

procedure, they do provide a common baseline upon which the performance of individ-

ual solution procedures for a particular problem may be compared. This is also the

number of elements utilized in the table of results for each of the solution procedures

developed by the other two linearization strategies.

Table 5. NUMBER OF ELEMENTS UPON WHICH SOLUTION PROCEDURE

RESULTS ARE BASED

Equation Domain Number of Elements

1 10
4.1 2 20

3 25

1 20

4.2 2 40

3 50

Two general observations can be made based on the results of Table 6

through Table 9. One is that the constant linearization technique begins to fail as the

function order over the given domain begins to approach two. This is clearly shown in

Table 8 as only half of the solution procedures provided convergent solutions of

equation (4.2), whose function order is just barely two over the domain 0 < x < 1. As

soon as the domain length was increased to 1.1, these remaining methods diverged as

shown in Table 9. This is most likely due to equation (4.2) becoming fully order two

as the domain is increased past x - 1.0. In order to determine where the solutions begin

to breakdown for equation (4.1), the domain was extended in 0.1 increments until all

solution procedures diverged. The results of this investigation showed that some sol-

ution procedures for equation (4.1) were able to provide convergent solutions over a
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domain of 0 <x < 1.7 , which approaches the region where equation (4.1) shifts in

function order from one to two. This failure to provide convergent solutions of

equations (4.1) and (4.2) is not due to a lack of elements used in the approximation, but

is a characteristic of this particular linearization strategy.

The second observation is that the number of iterations required to obtain

convergence is strictly a function of the iteration strategies utilized, both initial and

subsequent, and is independent of the interpolation strategy. Also, it was found that the

number of iterations is independent of the number of degrees of freedom utilized. That

is, the same number of iterations were required to reach convergence whether two or 20

elements were utilized. The accuracy of the approximation, on the other hand, seems

to be independent of the iteration strategy, and only a function of the interpolation

strategy and the number of degrees of freedom. The effect of each problem parameter

in the different solution procedures for both equations (4.1) and (4.2) over domain one

is now examined, as no convergent solutions were obtained for domains two and three.

b. Boundary Conditions

The use of an essential boundary condition at both ends of the domain in-

creased the rate of convergence by a factor of two to five over those strategies which

utilized an essential and natural boundary condition combination. In fact, only three

of the twelve strategies which used an E-N boundary condition combination provided

convergent approximations of the differential equation. Suffice it to say, the essential-

natural boundary condition combination does not produce very efficient results when

utilized with the constant linearization strategy and therefore this strategy should not

be used for E-N problems. That being the case, the remaining comments are directed

at those strategies which utilized an essential-essential boundary condition combination.

c. Initial Iteration Strategy

Each of the initial iteration strategies, described in I II .C.1, provided nearly
-he same results within a specific subsequent iteration and interpolation strategy com-

jination when the function order was small, as in equation (4.1). But, when the function

order begins to approach two, as in equation (4.2), the use of the right essential bound-

ary condition for the initial iteration values led to divergence, while the other two strat-

egies provided similar convergent results.
d. Subsequent Iteration Strategy

The use of the previous value strategy (1II.C.2.a) generally led to conver-

gence using less iterations than the average value strategy (III.C.2.b). The main reason

for this is most likely a result of the constant linearization strategy providing for
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Table 6. SOLUTION PROCEDURES AND RESULTS USING CONSTANT
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
ONE

Solution Procedure Results

Domain Iter. Interp. B. C.'s of C
Strat. Strat. Lt Rt Iter. Dif (sec)

E E L C S 7 0.48 0.0112
Prey. E E M C S 7 10.48 0.0081
Value E E R C S 8 0.48 0.0129

E N L C3  ---- 200- ----

E E L C S 7 0.12 0.0028
Prev. E E M C S 7 0.12 0.00280 < x < 1 1/14-3/14
Value E E R C S 8 0.12 0.0032

E N L C ---- 200- ---- -----

E E L C S 7 0.16 0.0027
0<x< Prey. Linear E E M C S 7 0.16 0.0043

Value E E R C S 8 0.16 0.0043

E N L C3  ---- 200- ---- -----

E E L C S 9 0.48 0.0127
0<x<I Avg. Midpt. E E M C S 7 0.50 0.0079

Value E E R C S 9 0.50 0.0132

E N L C S 38 0.27 0.0270

E E L C S 9 0.12 0.0025
0 < x < 1 Avg. 1/4-3/4 .E_ E M C S 7 0.12 0.0022

Value E E R C S 9 0.11 0.0037

E N L C S 38 0.31 0.0286

E E L C S 9 0.16 0.0041
0 < x < I Avg. Linear E E M C S 7 0.15 0.0035

Value E E R C S 9 0.17 0.0046

E N L C S 38 0.47 0.0471

LEGEND: E = essential boundary condition; N natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Oscillates between two nonsolutions of the differential equation
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Table 7. SOLUTION PROCEDURES AND RESULTS USING CONSTANT
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAINS
TWO AND THREE

Solution Procedure Results

Domain Iter. Interp. B. C.'s # of % CPU.
Strat. Strat. Lt Rt (D)o Cony Stab. t f (sec)

Prey. E E (1) D U -.--

O<x<2 Value Midpt. E N (1) D T -------

0<x<2 1434Prey. E E (1) D U ----- -------
Value E N, (1) D U -- .-----

0<x<2 Prey. Linear E E (1) D U -.--. -

Value E N (1) D U w... ... ....
Avg. E E (1) D U ..... .... .....0 < x<2 Av. Midpt.
Value E N (1) D U ..... ....

0<x<2 Avg. 1/4-3/4 E E (1) D U --....-. .
Value E N (1) D U -----------

0<x<2 Avg. Linear E E (1) D U ----

Value E N (1) D U ----- .---- --

0<x< 5 Prey. Midpt. E E (2) D U ----- -------
Value E N (2) D U ..... ...

0 < x< 5 Prey. 1/4-3/4 E E (2) D U ----- ---- ----

Value E N (2) D U ------ --- ----

0<x< 5 Prev. Linear E E (2) D U ---------- ----

Value E N (2) D U ----

Avg. E E (2) D U --------------
0<x<5 Value E N (2) D U ---------- -- --

0<x<5 Avg. 1,434 E E (2) D U------- ---------E_ E (2) D U .... ...

0 < x<5 Avg. 1/4-3/4 ... .L 2 ... - --- -

Value E N (2) D U ----- .---. --

0<x<5 Avg. Linear E E (2) D U --------.... ..
Value E N (2) D U .-------

LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S =unconditional stability;
CS = conditional stability; U = unstable

NOTES: (1) - See equation (4.9) (2) - See equation (4.10)
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Table 8. SOLUTION PROCEDURES AND RESULTS USING CONSTANT
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
ONE

Solution Procedure Results

Domain Iter. Interp. B. C.'s % of 01 P
Strat. Strat. Lt Rt (u;) Cons' Stab. t If CPU)LtR 10Iter. Dif (sec)

E E L C S 12 12.9 1.4595

Prey. E E M C S 13 13.0 2.0773
0<x~l Value Midpt. - -V leE E R D U -----. ..-. .....

E N L D U ---- .----

E E L C S 12 2.12 0.2198
0<x< Prey. E E M C S 13 1.99 0.33800<x<1Value 1/4-3/4 -- ~V leE E R D U -----. ..-. .....

E N L D U -----------
E E L C S 12 4.62 0.4922

Prey. E E M C S 13 4.77 0.6664
Value E E D U .... . .. ---

E N L D U -----------
E E L C S 17 12.8 1.7412

0<x< I Avg. Midpt. E E M C S 18 13.1 2.8829
Value E E R D U ----- --. --... .

E N L Ca S 32 ....

E F L C S 17 2.22 0.3619
0<< Avg. 1/4-3/4 E E M C S 18 1.97 0.3799

Value E E R D U ---- .----
E N L Ca S 32 ----

E E L C S 17 4.58 0.7091

0<x<I Avg. Linear E E M C S 18 4.89 1.0410
Value E E R D U ----- ... ..----

I I _ I_ E N L C , S 32 ....

LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable
NOTES: a - Converges to a nonsolution of the differential equation
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Table 9. SOLUTION PROCEDURES ND RESULTS USING CONSTANT
LINEARIZATION TO SOLVL EQUATION (4.2) OVER DOMAINS
TWO AND THREE

Solution Procedure Results
Domain Iter. Interp. B. C.'s of % CPU.

Strat. Strat. Lt Rt (I) 0 Cony Stab. e Dif (sec)

Prey. Midpt. E E (1) D U ---- ---
0<x<2 Value E N (1) D U---d-

0<x<2 P rev. 1,14-3,14 E E (1) D U --- -- -
Value E N (1) D U .... .----

0<x<2 Prey. Linear E E (1) D U .....----
Value E N (1) D U ----

E N (1) D U ----P<x<2 A L iar: E E (1) D U ----- ... ..----

V alue E N (1) D U ----- ... ..----

<x<2 Avg. Linear E E (1) D U -.... ....
Value E N (1) D U .....----

0< x< 2 Prev. 1/4-3/ E E (2) D U ..... .... .....
Value E N (2) D U ----- ... ..----

0<x<5 Prev. Linear E E (2) D U .... .----
Value E N (2) D U ----... ..

0<x<5 Prev. ne E E (2) D U -----
Value idpt E N (2) D U .... .----

P<x < 5 A v g . 1 / 4 -3 / E E ( 2 ) D U . .. . . . . ... . . . .
Value E N (2) D U -- .---- -

Avg. Midpt. E E (2) D U - ----0 <5Value E N (2) D U7 -..... .... .....---

0<x<5 A Linear -2) D U
V alu e E N (2 ) D U ----- .... .....

LEGEND: E- essential boundary condition; N natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: (1) - See equation (4.11) (2) - See equation (4.12)
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monotonic convergence when used with an E-E combination. The essential boundary

conditions provide a range that the values of u should be between and thus provide

strong guidance during the iteration process. The one exception to this involves those
cases where a natural boundary condition is given at the right end of the domain. In

these instances, only the average value iteration strategy resulted in convergent sol-

utions. This E-N combination does not fix the value of the dependent variable at the
right end, so the approximate solution most likely oscillates about the exact solution
during the iteration process. The average value strategy tends to enhance the conver-

gence of this type of approximation, which might explain why this strategy resulted in

convergence of the E-N problem while the previous value strategy did not.

e. Interpolation Strategy
The 1/4-34 interpolation method consistently provided the most accurate

approximations as indicated by the low average percent error values. This is because the
solution function for both equations (4. 1) and (4.2) is a polynomial function of x and the

I/4-3,/4 method was shown in Chapter II to provide better approximations of the inte-

grals of these functions than the midpoint or linear techniques.

f. Overall Performance
The overall performance, which factors both computational effort (i.e., CPU

time) and solution accuracy, of a particular solution procedure is indicated by its re-

spective value of CPU; where the lower the value, the more efficient the solution pro-
cedure. In Table 6, the CPU times upon which the CPU' values are based were all at

or below the clock subroutine accuracy of ± .03 seconds. Thus, the CPU* values in this
table should be used with caution. A comparison of the solution procedures using av-
erage percent error values (% Dif in Table 6) indicates the previous value iteration

strategy combined with the 1/4-3/4 interpolation strategy provides the most accurate

solution of equation (4. 1) over domain one.

Due to the increase in the number of elements and iterations required for

convergence of equation (4.2), more CPU time was required by the solution procedures

in Table 8. Hence, the CPU* times in Table 8 are all based on CPU times much greater
than the clock subroutine accuracy and therefore are all valid. Again, the combination
of previous value iteration and 1/4-3/4 interpolation strategies provided for the most ef-

ficient procedure.
3. Conclusions

The constant linearization strategy can generally provide approximations of

nonlinear differential equations when the function activity is less than order two over the
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given domain. The relative 'crudeness' of this linearization technique requires that as

much information as possil concerning the actual value of the dependent variable over

the given domain be known. Thus, the knowledge of an essential boundary condition

at each end of the domain is almost a prerequisite to obtain a convergent solution of a

nonlinear differential equation when using this linearization method. If these conditions

are met, an iteration strategy utilizing the magnitude of the smallest valued boundary

condition for the initial iteration and the previous value strategy for subsequent iter-
ations should result in convergence with a minimum number of iterations and expend

the least amount of CPU time for a given number of degrees of freedom. The 1/4-3'4

interpolation strategy should yield the most accurate approximation as most solutions

of engineering problems are monotonically increasing or decreasing functions, or at

worst, convex or concave over the given domain.

C. CLASSICAL LINEARIZATION

1. Problem Formulation
The classical linearization strategy transforms the u' nonlinear term into a linear

term as described in III.A.2 and shown in equation (4.18)

U 2,.Ou = u*u (4.18)

where u" is determined as outlined in III.C. Substitution of equation (4.18) into
equations (4.1) and (4.2) yields a linear differential equation of the form

u" ± u*u -f(x) xeD (4.19)

where the '-' is for equation (4.1), the '+' is for equation (4.2) and f(x) is again the

respective excitation function in each equation. The Galerkin FEM formulation process

transforms equation (4.19) into

b(T'l- Gr GT (u~ ,GGTuidxu rGf(x)dx (.0
a D f

The first two terms on the left side of equation (4.20) again provide B - Au where the
B vector is present only when a natural boundary condition is provided. The integral

on the right side of equation (4.20), which was evaluated in IV.B.1, gives the system

excitation vector, F. The only term remaining to be evaluated is the third term on the

left side of equation (4.20), the linearization matrix integral.
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Linearization Matrix , f GGTu'dx u

This integral is evaluated as outlined in 1l1.B.2 where h(u) in equation't3.I0) is

replaced by u. The detailed formulation of the element linearization matrices, !, for the

two different interpolation strategies is given in Appendix D, with the final results pro-

vided in Table 10. The f are then distributed into the system linearization matrix, L,

based on the local to global nodal point correspondence. The L' matrix is updated

during each iteration as the values of u' are revised.

Table 10. CLASSICAL LINEARIZATION ELEMENT MATRICES
Interpolation

Strategy

Midpoint ((),+ (1'4), 3 6
Approximation 2 1[ 1

,_ T

Linear 1, 3(u), + (u. ), (u*), + (u,..), 1
Approximation 12 [(), + ( ,), (u), + 3( J

Substitution of the matrix and vector equivalents for each integral into equation

(4.20) yields a system of equations given by

B - Au + Lu = F (4.21.a)

where the ± sign in equation (4.20) is incorporated into L. Again, F and B are com-

bined to yield F. and the system of linear algebraic equations takes the final form

(-A + LI)u i = Fm (4.21.b)

Equation (4.21 .b) is solved iteratively for u,, with L', being calculated using u., values,

until convergence is obtained.

2. Results

a. General

Sixteen different solution procedures were utilized to solve equations (4.1)

and (4.2) over domain one and eight procedures were utilized for each equation over

both domains two and three. The FORTRAN programs for constant linearization are

contained in Appendix F. The different strategies utilized in each procedure and the
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corresponding results are provided in Table I on page 56, and Table 12 on page 57 for

equation (4.1); and Table 13 on page 58, and Table 14 on page 59 for equation (4.2).

The number of elements utilized in each solution procedure is shown in Table 5 on page

47.

Table 11. SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
ONE

Solution Procedure Results

Domain Iter. Interp. B. C.'s # of % CPU
Strat. Strat. Lt Rt (u,)0 Cony Stab. ter Dif (sFter. Dif (sec)

E E L C S 6 0.24 0.0048

0<x<I Prey. ip. E E M C S 4 0.24 0.0040

Value E E R C S 5 0.24 0.0032

E N L C S 12 0.10 0.0030

E E L C S 6 0.16 0.0032

0<x< Prey. Linear E E M C S 4 0.16 0.0016
Value E E R C S 5 0.16 0.0038

E N L C S 12 0.38 0.0115

E E L C S 8 0.24 0.0048
0 < x < 1 Avg. Midpt. E E M C S 5 0.24 0.0048

Value E E R C S 8 0.24 0.0064

E N L C S 12 0.08 0.0019

E E L C S 8 0.16 0.0027

0 < x < I Avg. Linear E E M C S 5 0.16 0.0043
Value E E R C S 8 0.16 0.0043

E N L C S 12 0.36 0.0107

LEGEND: E = essential boundary condition; N natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition; -
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable
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Table 12. SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAINS
TWO AND THREE

Solution Procedure Results
Domain Iter. Interp. B. C.'s CPU

Strat. Strat. Lt Rt (u;) Con Stab. # of cIter. Dif (sec)

Prey. E E (1) C S 17 0.38 0.0678
2Value M . E N (1) C S 77 0.34 0.2262

0<x<2 Prey. Linear E E (1) C S 17 0.25 0.0458
Value E N (1) C S 76 0.29 0.2239

0<x<2 Avg. Midpt. E (1) C S 12 0.36 0.0423
Value E N (1) C S 18 0.34 0.0572

0 < x <2 Avg. Linear E E (1) C S 12 0.23 0.0298
Value E N (1) C S 18 0.25 0.0465

0<x<5 Prev. E E (1) Ce S 200+ 0.60 2.0412
_______ Value IV. E N (1) C0  S 200+ 0.96 3.2696

Prev. E E (1) C0  S 200+ 0.43 1.4574
Value Liner E N (1) C' S 200+ 0.65 2.2315

0<x< Avg. E E (1) C S 13 0.60 0.1365
5Value M t E N (1) C S 10 0.65 0.0986

0<x<5 Avg. Linear E E (1) C S 13 0.42 0.0777
Value E N (1) C S 13 0.42 0.0863

LEGEND: E = essential boundary condition; N = natural boundary condition;
L =left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Convergence was imminent and obtained within another 50 iterations
(1) - See equation (4.10)
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Table 13. SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
ONE

Solution Procedure Results

Domain Iter. Interp. B. C.'sStrat. Strat. Lt Rt (U;)o Cony, Stab. # of % C PU"
Iter. Dif (sec)

E E L C S 9 6.94 0.7851

Prev. E E M C S 8 6.98 0.6507
0 < x Value E E R C S 10 6.91 0.8740

E N L Co S 17 .... .....

E E L C S 9 4.61 0.4300

Prey. E E M C S 8 4.66 0.5275
<x< 1Value Linear E E R C S 10 4.58 0.5785

E N L C6 S 200+ .... .....

E E L C S 13 6.91 1.0120

I Avg. E E M C S I1 7.04 0.9376
0<x< Value E E R C S 15 6.90 1.1933

E N 'L C8  S 17 . .----

E E L C S 12 4.57 0.5988
1 Avg. Linear E E M C S 11 4.71 0.6376

0<x< Value E E R C S 15 4.57 0.8058

_E N L C' S 17 ----

LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S =unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Converges to another solution of the differential equation
b - Convergence to another solution of the differential equation was im-

minent
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Table 14. SOLUTION PROCEDURES AND RESULTS USING CLASSICAL
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAINS
"_ VO AND THREE

Solution Procedure Results

Domain Iter. Interp. B. C.'s # of % CPU
Strat. Strat. Lt Rt (uI) I Cony Stab. t Dif (sec)

Prey. Midpt E E (1) C0  S 87 ....0 < x<2 Value Mdt
Value E N (1) (2) ---- 200+ ....

0<x<2 Prey. Linear E E (1) C" S 95 ----. ..
Value E N (1) (2) ---- 200+ ..-.

0 < x < 2 Avg. M idpt. E E (1) °  S 40 .... .....
Value E N (1) C S 42 ....

0<x<2 Avg. Linear E E (1) C °  S 35 ---

Value E N (1) C S 52 ....

0<x<5 Prey. Midpt. E E (1) (2) ---- 200+ ....
Value E N (1) (2) ---- 200+

0<x<5 Prey. Linear E E (1) (2) ---- 200 + ----

Value E N (1) (2) ---- 200+ ----

0 < x < 5 Avg. Midpt. E E (1) C °  S 117 ----. ..

Value E N (1) C S 80 ---- ..

0<x<5 Avg. Linear E E (1) C' S 43 ----

Value E N (1) C S 105

LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Converges to a nonsolution of the differential equation
(1) - See equation (4.12)
(2) - Nonconvergent solution

Three general observations can be made from the results shown in these

tables. The first is that, for solution procedures which yielded valid converged approxi-

mations, the number of iterations to convergence was strictly a function of the initial and

subsequent iteration strategies and independent of the interpolation strategy, Addi-

tionally, the number of iterations to convergence was independent of the numb of el-

ements utilized. The accuracy of the solution, on the other hand, was strictly a fu\ction
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of the interpolation strategy and the number of degrees of freedom used in the approxi-

mation.

The second observation is that the classical linearization technique provided
valid approximations of equation (4.1) over domain three, but was not able to solve

equation (4.2) over domain two, despite the fact both of these equations over these re-

spective domains have the same function order. The main reason for this lies in the fact

that the solution of equation (4.2) over domain two is changing more rapidly than that

of equation (4.1) over domain three. Thus, it appears that the classical linearization

technique can provide valid approximations of nonlinear differential equations that have

a function order of two, but whose rate of change over the given domain is not 'exces-

sively' large.

Last of all, a general comment on the magnitude of the average percent

difference values in Table 13 is in order. Though these values may seem large in relation

to the percent difference values in Table I I and Table 12, it must be remembered that

these are average values. In this particular situation, the values of the dependent vari-

able over 0 < x < 0.2 are quite small, i.e., on the order of 0.08 and less. Thus, an ap-

proximate solution at one node which is in absolute error of only 0.0023 from an exact

solution value of 0.0100 yields a 23 percent error. Therefore, the larger average percent

difference values stem from minor errors in the approximations at those nodes where the

magnitude of the dependent variable is very small. The overall approximate solutions

provided by these procedures is much better than the average percent difference values

indicate as the actual percent difference values over a majority of the domain was less

than 0.5 percent. The effect of each problem parameter on the performance of the var-

ious solution procedures which provided convergent solutions of equations (4.1) and

(4.2) is now examined.

b. Boundary Conditions

The use of an E-E boundary condition combination provided convergence

with less iterations than the E-N combination in all instances except for the solution of

equation (4.1) over domain three. No explanation for this behavior could be determined

and it remains an open question requiring further investigation. The accuracy of the

approximations within a specific combination of iteration and interpolation strategies

was not greatly affected by the boundary conditions, as the average percent difference

values provided by the E-E and E-N combinations were similar.
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c. Initial Iteration Strategy

In solving equations (4.1) and (4.2) over domain one, the initial iteration

strategy is developed utilizing the prescribed essential boundary condition(s) as described

in III.C.l. An initial iteration strategy based on the average value of the two essential

boundary conditions consistently provided convergence with slightly less iterations than

the other two strategies.

Over domains two and three, only convergent solutions of equation (4.1)

were obtained; no valid approximate solutions were obtained of equation (4.2) over these

domains. Initial iteration strategies defined by equations (4.9) and (4.10) were both

utilized in the analysis over domain two to determine which was most effective.

Equations (4.9) and (4.10) provided nearly thc same numerical values in the approxi-

mation, but the use of equation (4.10) consistently enabled the solution procedure to

converge with less iterations. This behavior requires further research and remains an

open question, as it was felt that equation (4.9), which accounted for the dominance of

the u" term over the first part of the domain, should have provided better initial iteration

values. In the solution of equation (4.2) over domains two and three, both initial iter-

ation strategies led to convergent/nonconvergent nonsolutions of the differential

equation.

d. Subsequent Iteration Strategy

Over domain one for both equations (4.1) and (4.2), the use of the previous

value iteration strategy consistently provided convergence with slightly less iterations

than the average value strategy. The one exception to this was when an E-N boundary

condition combination was specified. In that case, both strategies yielded convergence

with the same number of iterations. Over domains two and three, the average value

strategy provided for convergence with significantly less iterations than the previous

value method. This fact is especially evident in the solution of equation (4.1) over do-

main three where the previous value strategy could not converge within 200 iterations

while the average value method provided convergence in 13 iterations or less. These two

observations tend to indicate that the classical linearization strategy provides for

monotonic convergence when the function order is one or less and oscillatory conver-

gence when the function order is greater than one.

e. Interpolation Strategy

The linear interpolation strategy consistently provided more accurate ap-

proximations than the midpoint strategy as indicated by the lower average percent dif-

ference values in Table 11 through Table 13. The main reason for this relates to the
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fact that the solutions of equations (4.1) and (4.2) are polynomial functions of x. The
rt,

number of elements utilized in each of the solution procedures was sufficient enough to

make the solution curve almost linear over each element. Thus, the linear approxi-

mation induced less error in the evaluation of the Galerkin linearization matrix integral

than the midpoint method. For those cases where only a few elements were utilized, the

midpoint method occasionally provided a more accurate approximation than the linear

strategy. But, the overall accuracy of the approximation was poor due to the decrease

in the number of system DOF.

f. Overall Petformance

When the function order of the differential equation solution is one or less,

a solution procedure which utilizes a previous value iteration and linear interpolation

strategy tends to provide the most efficient solutions based on the average percent dif-

ference values in Table 11 and CPU* values in Table 13. The CPU' values in Table 11

should be evaluated with caution as the CPU times upon which they are based are at

or below the accuracy level of the clock subroutine which is + 0.03 seconds. When the

function order is greater than one, an average value iteration and linear interpolation

strategy combination provide the most efficient approximation as indicated by the

CPU* values in Table 12.

3. Conclusions

The classical linearization strategy can generally provide approximations of

second order nonlinear differential equations when the function order is two or less and

the rate of change of the dependent variable is not extremely large. Provided these

conditions are met, an average value iteration strategy combined with a linear interpo-

lation strategy should provide an efficient, valid approximation of the differential

eqL tion. If the function order is later found to be one or less, the use of a previous

value iteration strategy should result in similar numerical results and converge using

slightly less iterat ns. In either case, both the E-E and E-N boundary condition com-

binations can be accommodated, although the use of an E-E combination is preferred.

D. QUASILINEARIZATION

1. Problem Formulation

Quasilinearization transforms the nonlinear u2 term into a linear term using the

relation given by equation (3.4.a), where q(u) = (u*' and q'(u) = 2u'. Substitution of

these functions into equation (3.4.a) yields
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u 2 u = 2u u + ((U.) 2 - u.(2u())

= 2u*u - (u) 2

where u" is determined as outlined in III.C. Substitution of equation (4.22) into

equations (4.1) and (4.2) yields a linear differential equation of the form

u" ± 2u*u =f(x) ± (u) 2  x e D (4.23)

where both '-' signs are for equation (4.1), both '+' signs are for equation (4.2) and

f(x) is the respective excitation function in each equation. The Galerkin FEM formu-

lation process transforms equation (4.23) into

G(GT)I b - G(Tdxu ± 2JGGeu~dx u = f(xd ± JG(uP)2 dx (4.24)

The first two terms on the left side of equation (4.24) yield B - Au where the B vector

is present only when a natural boundary condition is prescribed. The third term on the

left side of the equation is the linearization matrix integral which was evaluated in IV.C.1

and yields L'. Both integrals on the right side of equation (4.24), the excitation and

linearization vector, were evaluated in IV.B. I and yield F and F, respectively.

Substitution of the matrix and vector equivalents for each term into equation

(4.24) yields a system of equations given by

B-Au + 2Lu = F +F (4.25.a)

where the ± signs in equation (4.24) are incorporated into L' and F*. Combining F and

B to yield Fm, the system of linear algebraic equations takes the final form

(-A + 2LI)ui-- Fm + F1 ., (4.25.b)

Equation (4.25.b) is solved iteratively for u, with both V and F" changing after each it-

eration, where i is the iteration counter.

2. Results

a. General

Forty eight different solution procedures were evaluated in solving

equations (4.1) and (4.2) over domain one while there were twenty four procedures

available for approximating each equation over both domains two and three. The
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FORTRAN programs for quasilinearization are provided in Appendix G. The different
strategies utilized in each solution procedure and the corresponding results in approxi-

mating the solution of equation (4.1) are provided in Table 15 on page 65 through
Table 19 on page 69. For equation (4.2), this information is provided in Table 20 on
page 70 through Table 25 on page 75. The number of elements utilized in each solution

procedure is given in Table 5 on page 47.
Four general observations can be made about the quasilinearization strat-

egy based on these results. The first is that this linearization technique provided valid
approximations of both equations (4.1) and (4.2) over all domains, although some indi-
vidual solution procedures were much more accurate than others. The difference in

performance between the various solution procedures became noticeable as the function
order approached three or more and the solution function gradient became large, as in
equation (4.2) over domains two and three.

The second point is that this linearization technique provides for conver-
gence with a minimum of iterations due to its quadratic rate of convergence [Ref. 1: pp.
38-40). Some of the solution procedures utilized to solve equations (4.1) and (4.2) over
domain three converged in just two iterations and thus did not yield as accurate sol-
utions as was anticipated. In order to determine if these solution procedures could
provide more accurate approximations, the convergence criterion was changed from
.0001 to .0000001, to allow for slightly more iterations. The effect of changing the con-
vergence criterion for those applicable solution procedures is noted in Table 18,

Table 19, Table 24, and Table 25.

The third point, which also relates to convergence, is that the number of
iterations required for convergence is not always a function of the overall iteration
strategy as it was for the previous two linearization strategies. When the function order
is one or slightly over two, as in equation (4.1) over domains one and two, and equation
(4.2) over domain one, the number of iterations is dictated by the iteration strategies

utilized. For those situations where the function order is almost three or more, the

number of iterations required for convergence also appears to be affected by the specific
combination of interpolation strategies used in the solution procedure.
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Table 15. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
ONE

Solution Procedure Results

Domain Iter. Interp. B. C.'s N% Cony, S # of /o CPU,
Strat. Strat. Lt Rt C Stab.Iter. Dif (sec)

E E L C S 4 0.00 0.0000

Prey. Midpt. E E M C S 4 0.00 0.0000
0 < x< 1 Value Midpt. E E R C S 4 0.00 0.0000

E N L C S 5 0.00 0.0000

E E L C S 4 0.60 0.0100
0<x< I Prey. Midpt. E E M C S 4 0.60 0.0080

Value 1/4-3,'4 E E R C S 4 0.60 0.0100

E N jL C S 5 0.16 0.0023

E E L C S 4 0.32 0.0053
0<x< Prey. Midpt. E E M C S 4 0.32 0.0064

Value Linear E E R C S 4 0.32 0.0064

E E R C S 5 0.24 0.0057

E E L C S 4 0.16 0.0021

Prey. Linear E E M C S 4 0.16 0.0021
Value Midpt. E E R C S 4 0.16 0.0032

E N L C S 5 0.61 0.0122

E E L C S 4 0.44 0.0059

Prev. Linear E E M C S 4 0.44 0.0059
Value 1/4-3,4 E E R C S 4 0.44 0.0044

E N L C S 5 0.54 0.0108

E E L C S 4 0.16 0.0027

Prey. Linear E E M C S 4 0.16 0.0027
Value Linear E E R C S 4 0.16 0.0027

1 _ E N L C S 5 0.02 0.0004
LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable
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Table 16. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
ONE (CONT.)

Solution Procedure Results

Domain Iter. Interp. B. C.'s - # of % CPU.
Strat. Strat. Lt Rt (u) 0 Cony Stab.Iter Dif (sec)

E E L C S 5 0.00 0.0000

Avg. Midpt. E E M C S 5 0.00 0.0000
0 < x < 1 Value Midpt. E E R C S 6 0.00 0.0000

E N L C S 5 0.02 0.0004

E E L C S 5 0.60 0.0120
0 < x < 1 Avg. Midpt. E E M C S 5 0.60 0.0080

Value l/4-3,'4 E E R C S 6 0.61 0.0141

E N L C S 5 0.11 0.0015

E E L C S 5 0.32 0.0053
0 < x < I Avg. Midpt. E E M C S 5 0.32 0.0064

Value Linear E E R C S 6 0.32 0.0075

E N L C S 5 0.27 0.0053
E E L C S 5 0.16 0.0027

0<x< I Avg. Linear E E M C S 5 0.16 0.0032
Value Midpt. E E R C S 6 0.16 0.0038

E N L C S 5 0.60 0.0099

E E L C S 5 0.45 0.0089
0<x< 1 Avg. Linear E E M C S 5 0.45 0.0089

Value 1/4-3,4 E E R C S 6 0.44 0.0118

E N L C S 5 0.53 0.0070
E E L C S 5 0.16 0.0037

0 < x< I Avg. Linear E E M C S 5 0.16 0.0038
Value Linear E E R C S 6 0.16 0.0037

E N L C S 5 0.36 0.0084

LEGEND: E = essential boundary condition; N = natural boundary condition;
L - left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS - conditional stability; U = unstable
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Table 17. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
TWO

Solution Procedure Results

Domain Iter. Interp. B. C.'s # of % CPU.
Strat. Strat. Lt Rt (u')0 Cony S Iter. Dif (sec)

Prev. Midpt. E E (1) C S 4 0.00 0.0001
0<x<2 Value Midpt. E N (1) C S 4 0.00 0.0001

0<x<2 Prey. Midpt. E E (1) C S 4 0.97 0.0547
Value 1,14-314 E N (1) C S 4 0.89 0.0475

0<x<2 Prey. Midpt. E E (1) C S 4 0.52 0.0291
Value Linear E N (1) C S 5 0.47 0.0249

0<x<2 Prey. Linear E E (1) C S 4 0.26 0.0130
Value Midpt. E N (1) C S 4 0.22 0.0119

0<x<2 Prev. Linear E E (1) C S 4 0.71 0.0424
Value 1/14-3,'4 E N (1) C S 4 0.69 0.0411

0 < x < 2 Prey. Linear E E (1) C S 4 0.26 0.0137Value Linear E N (1) C S 4 0.27 0.0153

0<x<2 Avg. Midpt. E E (1) C S 6 0.00 0.0001
Value Midpt. E N (1) C S 5 0.00 0.0002

0<x<2 Avg. Midpt. E E (1) C S 5 0.97 0.0610
Value 1/4-314 E N (I) C S 5 0.89 0.0594

0 < x < 2 Avg. Midpt. E E (1) C S 5 0.51 0.0308
Value Linear E N (1) C S 5 0.47 0.0326

0<x<2 Avg. Linear E E (1) C S 6 0.26 0.0198
Value Midnt. E N (1) C S 6 0.22 0.0179

0<x<2 Avg. Linear E E (1) C S 5 0.71 0.0448
Value 1,'4-3,'4 E N (1) C S 5 0.69 0.0503

0<x<2 Avg. Linear E E (1) C S 5 0.26 0.0163
Value Linear E N (1) C S 5 0.27 0.0180

LEGEND: E = essential boundary condition; N -natural boundary condition;
L - left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS - conditional stability; U = unstable

NOTES: (1) - See equation (4.10)
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Table 18. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
THREE

Solution Procedure Results
Domain Iter. Interp. B. C.'s %# of CPU.

Strat. Strat. Lt Rt (u;) 0 Cony S Iter. Dif (sec)

Prey. Midpt. E E (1) Co S 5 0.00 0.0002
0,< x< 5 Value Midpt. E N (I) C" S 6 0.04 0.0046

0<x<5 Prey. Midpt. E E (1) C S 3 1.43 0.0948
Value 14-3,'4 E N (l) C S 7 1.55 0.2216

u<x<5 Prey. Midpt. E E (1) C" s 2 0.53 0.0230
Value Linear E N (1) C S 5 0.83 0.0911

Prey. Linear E E (1) Co S 5 0.38 0.03520<X<5 Value Midpt. E N (1) C S 5 0.43 0.0408

0 < x < 5 Prey. Linear E E (1) Cb S 2 0.80 0.0400
Value 1/4-3/4 E N (1) C S 3 1.08 0.0717

0<x<5 Prey. Linear E E (1) Cb S 2 0.15 0.0063Value Linear E N (I) Cb S 2 0.15 0.0068

LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable
NOTES: a - Convergence criterion changed to 0.0000001 in order to allow for ad-
ditional iterations and a more efficient approximation

b - Convergence criterion kept at .0001 as use of tighter criterion in note
a leads to a less efficient or nonconvergent approximation.

(1) - See equation (4.10)
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Table 19. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.1) OVER DOMAIN
THREE (CONT.)

Solution Procedure Results
Domain Iter. Interp. B. C.'s # of % C

Strat. Strat. Lt Rt (u;)0 Cons" S Iter. Dif (sec)

Avg. Midpt. E E (1) C0  S 5 0.00 0.0001
0 < x < 5 Value Midpt. E N (1) C. S 9 0.04 0.0069

0<x<5 Avg. Midpt. E E (1) C" S 2 2.95 0.1276
Value 1,4-3,'4 E N (1) C S 9 1.55 0.2782

0<x<5 Avg. Midpt. E E (1) C °  S 7 0.76 0.1040
Value Linear E N (1) C S 6 0.83 0.1049

0<x<5 Avg. Linear E E (1) C0  S 7 0.38 0.0528
Value Midpt. E N (1) C S 5 0.42 0.0422

0<x<5 Avg. Linear E E (1) C0  S 8 1.05 0.1644
Value 1,14-34 E N (1) C S 4 1.07 0.0818

0<x<5 Avg. Linear E E (1) Cc S 2 3.35 0.1559
Value Linear E N (1) C' S 6 0.42 0.0519

LEGEND: E = essential boundary condition; N-- natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Convergence criterion changed to 0.0000001 in order to allow for ad-
ditional iterations and a more efficient approximation

b - Convergence criterion kept at .0001 as use of tighter criterion in note
a leads to a less efficient or nonconvergent approximation.

c - Tightening of convergence criterion had no effect
(1) - See equation (4.10)
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Table 20. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
ONE

Solution Procedure Results

Domain Iter. Interp. B. C.'s
Strat. Strat. Lt Rt () Cony, Stab. # of ( Lc- - - - Iter. Dif (sec)

E E L C S 5 1.05 0.0663

Prey. Midpt. E E M Ce S 11 .... .....
0<x< 1 Value Midpt. E E R Ca S 5 ---- ..

E N L Ca S 6 ----

E E L C S 5 16.1 1.0700

Prey. Midpt. E E M C* S I-) ...

Value 1,4-3,'4 E E R C S 5 ....--

E N L C0  S 6 ----

E E L C S 5 9.28 0.6487

0<x<I Prey. Midpt. E E M C0  S 12 ----. ..
Value Linear E E R C S 5 ----

_E N L C0  S 6 ----

E E L C S 5 3.61 0.2163
0< Prey. Linear E E M C 0  S 1I ....

Value Midpt. E E R C0  S 5 ----

E N L C0  S 6 ----

E E L C S 5 11.4 0.6809
Prey. Linear E E M C _S 12 .... -
Value 1/4-3,14 E E R C S 5 .... .....

E N L C0  S 6 .... .....

E E L C S 5 4.64 0.3087
0 Prev. Linear E E M C S 12 .... .....

Value Linear E E R C° S 5 .... ..-- -

__I _ E N L C" S 6 . .---- ...

LEGEND: E = essential boundary condition; N natural boundary condition;
L = left essential boundary condition; R-- right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS - conditional stability, U = unstable

NOTES: a - Converges to another solution of the differential equation
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Table 21. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN

______ONE (CONT.) ___________

Solution Procedure Results
Domain Iter. lnterp. B. C.'s # 0o CPU*

Strat. Strat. Lt Rt (u,*), Cony. Stab. I ofr /0 (ec

E E L C S 6 1.07 0.0852

*Avg. Midpt. E E M C" S 15 -- --
0 <x<1I Value Midpt. E E R Cc S 7 ---- _

____ ___E N L C" 5 7 ----

E E L C S 6 16.1 1.3399

0czx<1I Avg. Midpt. E E M Ca 5 16 ---- --
Value 1,74-3,'4 E E R Ca 5 7 .... ---

____ ___E N L Ca S 7 --

E E L C 5 6 9.30 0.7422

0 <x <I Avg. Midpt. E E M Co 5 15 -- --
Value Linear E E R C0  5 7 ---- ---

_______E N L C0  5 7 ---- ---

E L L C S 7 3.61 0.3486

0 <x<1I Avg. Linear E E M Ca 5 15 --- _---

Value Midpt. E E R C0  S 6 ---- ---

____E N L C0  S 7 --

E E L C S 7 11.4 0.9091

0<x< I Avg. Linear E E M Ce S 16 ---- ---
Value 1,14-3,14 E E R C' 7 ---- ---

_ _ _ _ _ _ _ __ _ _ E N L Cd 5 7 ---- ---

E E L C S 7 4.60 0.4440

0< x<1I Avg. Linear E E M C' 5 15 ---- -----
Value Linear E E R C' 5 7 ---- ---

*E .N L C' 5 7 ----

LEGEND: E = essential boundary condi..on, N =natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S =unconditional stability;
CS = conditional stability-, U = unstable

NOTES: a - Converges to another solution of the differential equation
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Table 22. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
TWO

Solution Procedure Results

Domain Iter. Interp. B. C.'s
Strat. Strat. Lt Rt (u'), Cony. Stab. # of CPU

Iter. Dif (sec)

Prey. Midpt, E E (1) C S 4 4.620 1.1534
0<x<2 Value Midpt. E N (1) C S 3 0.85 0.1777

0<x<2 Prey. Midpt. E E (1) C CS 4 56.6 c 15.252
Value 1,4-3,4 E N (1) ---- CS b  200+ d -----

0<x<2 Prev. Midpt. E E (1) C S 4 32.0' 9.0524
Value Linear E N (1) ---- CS b 200+ d .....

Prev. Linear E E (1) C S 3 9.68' 2.0618
0<X<2 Value Midpt. E N (1) C S 5 273 d 92.669

0<<2 Prev. Linear E E (1) C CSb 4 38.9' 10.626
X Value 1,'4-3,'4 E N (1) C S 5 188 d 64.094

0<x2 Prey. Linear E E (1) C S 4 16.0' 4.3182
Value Linear E N (1) C S 3 3.28' 0.6880

LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Majority of error occurs over 0 < x < 0.2
b - Divergence results when certain number of elements are utilized
c - Majority of error occurs over 0 < x < 0.6
d - Provides a reasonable approximation over 1 < x < 2
e - Majority of error occurs over 0 < x < 0.5
f- Majority of error occurs over 0 < x < 0.3
(1) -See equation (4.11)
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Table 23. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
'TWO (CONT.)

Solution Procedure Results

Domain Iter. Interp. B. C.'sStrat. Strat. Lt Rt (u;), Cony Stab. # of % CPU*
Iter. Dif (sec)

Avg. Midpt. E E (1) C S 4 4.700 1.2206
0< x,< 2 Value Midpt. E N (1) C S 4 0.92 0.2580

0<x<2 Avg. Midpt. E E (1) C S 4 55.5h 14.952
Value 14-3,4 E N (1) C CS' 129 487 d 4089.7

0<x<2 Avg. Midpt. E E (1) C S 4 31.5' 9.1124
Value Linear E N (1) C S 21 593 811.74

0<< Avg. Linear E E (1) C S 4 9.74f 2.4966
0<x< Value Midpt. E N (1) C S 5 275 d 88.739

Avg. Linear E E (1) C S 4 38.8' 11.233
0<X< 2 Value 1,'4-3'4 E N (1) C S 5 192d 68.267

0<x<2 Avg. Linear E E (1) C S 4 16.0' 4.0571
Value Linear E N (1) C S 4 3.120 0.8615

LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable
NOTES: a - Majority of error occurs over 0 < x < 0.2

b - Majority of error occurs over 0 < x < 0.6
c - Divergence results when certain number of elements are utilized
d - Provides a reasonable approximation over I < x < 2
e - Majority of error occurs over 0 < x < 0.5
f- Majority of error occurs over 0 < x < 0.3
(1) - See equation (4.11)
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Table 24. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
THREE

Solution Procedure Results

Domain Iter. Interp. B. C.'s # of CPU
Strat. Strat. Lt Rt (u) Cony Stab. Iter Dif (sec)

Prev. Midpt. E E (1) Ca S 15 0.16 0.0875
0<x<5 Value Midpt. E N (1) Ca S 11 0.38 0.4189

0 < x < 5 Prey. M idpt. E E (1) D U .... .....
Value 1,'4-3,'4 E N (1) D U .....----

0<x<5 Prey. Midpt. E E (1) D U ---- .----
Value Linear E N (1) D U .... .----

0<x<5 Prev. Linear E E (1) C CS' 2 2692d 636.11
Value Midpt. E N (1) D U ----- ... ..----

0<x<5 Prey. Linear E E (1) D U .... .----
Value 1/4-3/4 E N (1) D U ----- ... ..----

0 < X < 5 Pre. Linear E E (1 C•  S 5 0.88 0.5378
Value Linear E N\1 (1) SCb 3 7.48' 2.5872

LEGEND: E = essential boundary condition; N = natural boundary condition;
L = left essential boundary condition; R = right essential boundary condition;
M = average of L and R; C = convergence; D = divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Convergence criterion changed to 0.0000001 in order to allow for ad-
ditional iterations and a more efficient approximation

b - Convergence criterion kept at .0001 as use of tighter criterion in note
a leads to a less efficient or nonconvergent approximation.

:.c - Divergence results when certain number of elements are used
d - Provided an adequate approximation over 2.5 < x < 5.0
e - Majority of error occurs over 0 < x < 0.5 where the values of u < 2.0
(1) - See equation (4.12)
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Table 25. SOLUTION PROCEDURES AND RESULTS USING QUASI-
LINEARIZATION TO SOLVE EQUATION (4.2) OVER DOMAIN
THREE (CONT.)

Solution Procedure Results
Domain Iter. lnterp. B. C.'s # of / CPU*

Strat. Strat. Lt Rt ( Cony S Iter. Dif (sec)

Avg. Midpt. E E (1) C' S 4 11.1b 5.2562
0<x< 5 Value Midpt. E N (1) Ce S 4 10.6b 4.8829

0 < x < 5 A vg. M idpt. E E (1) D U .... .....
Value 1,14-34 E N (1) D U .....----

0< x< 5 Avg. M idpt. E E (1) D U -----.. ...
Value Linear E N (1) D U ----- ... ..----

0<x<5 Avg. Linear E (1) Cc S 2 1143 262.37
Value Midpt. E N (1) D U ----- .....----

0 < x < 5 Avg. Linear E E (1) Cc S 2 672' 149.82
Value 1/4-3,4 E N (1) D U ---- .....-- ---

0<x<5 Avg. Linear E E (1) C' S 7 1.69 1.4075
1 Value Linear E N (1) C" S 31 1.46 5.2343

LEGEND: E = essential boundary condition; N = natural boundary condition;
L =left essential boundary condition; R= right essential boundary condition;
M = average of L and R; C = convergence; D= divergence S = unconditional stability;
CS = conditional stability; U = unstable

NOTES: a - Convergence criterion changed to 0.0000001 in order to allow for ad-
ditional iterations and a more efficient approximation

b - Majority of error occurs over 0 < x < 0.5 where the values of u < 2.0
c - Convergence criterion kept at .0001 as use of tighter criterion in note

a leads to a less efficient or nonconvergent approximation.
d - Provided an adequate approximation over 2.0 < x < 5.0
e - Provided an adequate approximation over 1.5 < x < 5.0
(1) - See equation (4.12)

Last of all, a general comment is required with respect to the average per-

cent difference values in Table 22 through Table 25. As previously noted in IV.C.3, the

value of the dependent variable for equation (4.2) is very small over the first part of the

domain. Thus, errors in the approximation which are on the same order of magnitude

as the value of the dependent variable result in large percent difference values. There-

fore, average percent difference values of three or more are amplified with a superscript

75



which advises the reader as to the true accuracy of the approximation. The term 'a

majority of error' in each of these accompanying notes means that the percent aATerence

at each node is 10 percent or more over the indicated domain. The effect of each pa-

rameter on the overall performance of the various solution procedures is now evaluated.

b. Boundary Conditions

Except in a few isolated instances, the accuracy and number of iterations to

convergence for a specific combination of iteration and interpolation strategies was un-

affected by the boundary condition combination utilized. The one exception to this is

shown in Table 20 and Table 21 where the use of a E-N combination caused the sol-

ution procedure to converge to a second solution of the differential equation. But, when

the initial iteration strategy was changed from using the value of the left boundary con-

dition to the strategy defined by equation (4.12), valid approximations of the solution

u = l0x3 were obtained by all procedures using an E-N combination. Thus, it appears

that this linearization technique is quite favorable to both E-E and E-N type boundary

value problems, provided that a valid initial iteration strategy is utilized.

c. Initial Iteration Strategy

Over domain one for equation (4.1), use of the three initial iteration strate-

gies described in III.C.1 provided convergence with nearly the same number of iter-

ations. Over the same domain for equation (4.2), only the use cf the left essential

boundary condition as values for the initial iteration strategy yielded a convergent ap-

proximation of the original exact solution. The other two strategies, when utilized with

an E-E boundary condition combination, converged to a second solution of equation

(4.2). The reason that the use of the left essential boundary condition for the initial it-

eration strategy outperformed the other two strategies is because it has a value of zero.

With (u,*)0 = 0, the first iteration solves the differential equation neglecting the effect of

the nonlinear term, as F" and L' are zero. Thus, the values of (u'), utilized in the next

iteration are very close to values of (u,')0 that would have been obtained by neglecting the

u2 term and integrating the differential equation twice with the imposition of boundary

conditions. From Figure 17 on page 77, it can be seen that the u" term dominates over

a majority of the domain. Thus, if equation (4.2) had been analyzed as order two over

this domain and the initial iteration strategy developed by neglecting the u2 term, similar

results using one less iteration would probably have been obtained.

For equation (4.1) over domain two, the initial iteration strategies defined

by equations (4.9) and (4.10) were both used in the analysis to determine which was most

effective. As in the classical linearization results, they both provided almost identical
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Figure 17. Dominance of Terms in Equation (4.2) Over Domain One
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numerical approximations, and the Lse of equation (4.10) again resulted in convergence

with less iterations. Likewise, equations (4.11) and (4.12) were both utilized as initial

iteration strategies for equation (4.2) over domain two. They both provided the same

accuracy in the approximation, but the use of equation (4.11), which divides the

dominance equally over the domain, converged using less iterations as was originally

expected. The use of equations (4.10) and (4.12) for the initial iteration strategies of

equations (4.1) and (4.2), respectively, over domain three, lead to accurate approxi-

mations 'or those solution procedures which did converge.

d. Subsequent Iteration Strategy

The use of either the previous value or average value iteration strategy, in

general, had no effect on the number of iterations required for convergence. This is most

likely due to the quadratic rate of convergence guaranteed by the quasilinearization

method, as previously mentioned in IV.D.2.a.

e. Interpolation Strategy

The quasilinearization method requires the use of two interpolation strate-

gies; one for the linearization vector and one for the linearization matrix. In the in-

terpolation strategy column of Table 15 through Table 25, the upper strategy is for the

linearization matrix and the lower one is for the linearization vector. A general trend in

th iccuracy provided by the various combinations of interpolation strategies is evident.

The different combinations are ranked from least to most accurate in the following list,

where the first strategy indicated is for the linearization matrix and the second is for the

linearization vector.

" Midpoint; 1,'4-314

* Linear; 114-3,'4

" Midpoint;Linear

" Linear;Midpoint

" Linear;Linear

" Midpoint;Midpoint

Two conclusions can be drawn from the above list. First is that the most

accurate interpolation strategies utilize the same interpolation technique for both

linearization integrals. Thus, if a 1/4-3'4 interpolation strategy for the linearization

matrix had been developed, there is a good possibility that an overall l/4-3,'4;1/4-3,4

interpolation strategy would have provided accurate approximations. Second, the least
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refined interpolation strategy, namely midpoint;midpoint, provides the most accurate
approximations. This result is not very surprising, as in many situations, the simplest

method provides the best results.

f. Overall Performance

In almost all cases, the solution procedure consisting of a previous iteration
and a midpoint;midpoint interpolation strategy provided the most efficient approxi-

mations regardless of the function order of the equation or the boundary conditions

imposed. The only case where this procedure faltered slightly was in approximating
equation (4.2) over domain two. But, as shown in note a of Table 22 and Table 23, it
only had a problem approximating the solution over that part of the domain where

u < 0.1. The solution procedure utilizing a previous value iteration and a linear;linear

interpolation strategy was not quite as efficient as the above solution procedure, but

performed in an acceptable manner.

3. Conclusions

Quasilinearization provides a viable method of approximating nonlinear differ-
ential equations that contain the u2 term, regardless of the function order of the equation
and the nature of the boundary conditions imposed. The use of a previous value iter-

ation and either a midpoint;midpoint or linear;linear interpolation strategy should pro-
vide an accurate approximation with a minimum number of iterations, provided that the

initial iteration strategy is adeptly chosen. The actual shape of the solution curve and

the discretization invoked, i.e., the number of elements, are the two factors most likely
to determine which interpolation technique provides the more accurate approximation.

E. FINAL REMARKS

An overall solution procedure involving quasilinearization combined with a previous
value iteration and either a midpoint;midpoint or linear;linear interpolation strategy

provides excellent approximations of second order, nonlinear, one dimensional, differ-

ential equations which contain the u2 nonlinear term. As the u2 term has a more non-

linear nature than some of the other nonlinear terms encountered, i.e., u"u, (u'), etc.; it
is felt that this solution procedure should provide viable approximations of many non-

linear, second order differential equations. It cannot be overemphasized that the success

or failure of the above solution procedure depends greatly on the initial iteration strategy

developed. Thus, utilization of this solution procedure requires that the user have an

in-depth understanding of the physics involved in the system being analyzed.
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This research has provided a fundamental baseline for the future investigation of

techniques for solving nonlinear differential equations. The following steps provide a

logical progression for determining the actual capabilities of a Galerkin FEM solution

procedure utilizing quasilinearization.

" Conduct an analysis of second order, one dimensional, nonlinear, differential
equations which contain nonlinear terms other than u2. These nonlinear equations
should be of an engineering nature for which experimental data exists to allow for
a confirmation of the results developed by the mathematical model.

" Investigate the ability of this solution method to solve one dimensional, nonlinear,
fourth order differential equations. This requires some modification of the in-
terpolation strategies as the Galerkin FEM must utilize cubic shape functions for
developing a fourth order differential equation approximation.

" Extrapolate the concepts and principals developed by this and future research to
the solution of two dimensional, second and fourth order, nonlinear differential
equations.
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APPENDIX A. FORCING FUNCTION FORMULATION STRATEGIES

On an elemental level, f2 G(6x)dx. becomes f,'g(6(a, + ))d where

* t is the local element coordinate, 0 < :5 1,

a e, is the sum of all element lengths prior to the element being evaluated. For equal
length elements, a, = (i - 1)1, where i is the element number.

Midpoint Lumped Approximation

This method evaluates 6(a + t) at the midpoint of the element, = -s- and brings it
2

outside the integral as a constant yielding

f=6 d(

l-e

31,

+1 le I
Quarter/Three Quarter Lumped Approximation

This method takes 6(a + c) inside the shape function vector yielding

The first 6(a + ) term is evaluated at € - and the second term at c - 4 yielding
44
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--o6( )(- I --

4el

f d4

X (A.2.b)

--31, /  1/
+ le

j4

Consistent Evaluation

This method calculates the exact value of the Galerkin excitation integral yielding

f= 6 + )d

TI
a- a4 + 2_

=2 2 d

21, + 2 31, (A.3)

M42 43

6 2 1a/, +  ,
!e e

[2 3

3ocu/ + 12

[2]3al, + 2/
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APPENDIX B. PROGRAM LISTINGS AND RESULTS FOR THE

LINEAR APPLICATION OF THE GALERKIN FEM

C
C * PROGRAM LINI
C *
C * THIS PROGRAM SOLVES THE DIFFERENTIAL EQUATION U" = 2., 0<X<2
C * U(0)=0; U'(2)=4 WITH UEXACT=X**2.

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
ELEN, ICORR(100,2) ,NEL,NSNP

C INPUT NUMBER OF ELEMENTS AND TOTAL LENGTH OF DOMAIN

120 PRINT*,'INPUT NUMBER OF ELEMENTS DESIRED AND TOTAL LENGTH.'
130 READ(6,*) NEL,TLEN

C CALCULATE NUMBER OF NODAL POINTS AND DEFINE LEFT BOUNDARY OF
C DOMAIN

135 NSNP=NEL+1
150 COORD(1)=0.

C DETERMINE ELEMENT LENGTH, LOCAL TO GLOBAL NODAL POINT
C CORRESPONDENCE, AND X-COORDINATE OF EACH NODAL POINT

155 ELEN--TLEN/FLOAT(NEL)
160 DO 169 IEL=1,NEL
162 ICORR( IEL, 1)=IEL
163 ICORR(IEL,2)=IEL+1
164 COORD( IEL+I)=COORD( IEL)+ELEN
169 CONTINUE

C CALL SUBROUTINE SYMlA TO DETERMINE A MATRIX AND F VECTOR AND SOLVE
C THE LINEAR SYSTEM OF EQUATIONS AU = F

170 CALL SYMlA

C CALL SUBROUTINE UX2EXT TO DETERMINE EXACT SOLUTION

190 CALL UX2EXT

C CALL SUBROUTINE OUTLIN TO OUTPUT RESULTS

200 CALL OUTLIN
210 END
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C . . . .. . . . . . .. . .
. . . .

C * SUBROUTINE SYMIA *
C * *
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *
C * PROGRAM LINI AND SOLVES THE LINEAR SET OF EQUATIONS AU = F. *
C

100 SUBROUTINE SYMIA

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
:ELEN,ICORR(100,2),NEL,NSNP

120 DIMENSION AE(2,2), FS1E(2), FS2E(2), WKAREA(40600)

C ZERO OUT A MATRIX AND F VECTOR

140 DO 210 IZ = 1,NSNP
150 FT(IZ) = 0.
160 DO 200 JZ = 1,NSNP
170 A(IZ,JZ) = 0.
200 CONTINUE
210 CONTINUE
213 ALPHA=0.

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

215 DO 375 IEL=1,NEL

C DETERMINE ELEMENTAL A MATRIX AND ELEMENTAL F VECTOR

220 AE(1,1)=I./ELEN
230 AE( 1,2)=( -1./ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(i,i)
260 FSIE(I)=ELEN
265 FS1E(2)=ELEN

C DISTRIBUTE AE MATRICES AND FE VECTORS INTO SYSTEM A MATRIX AND F
C VECTOR

300 DO 370 11=1,2
310 DO 350 JJ=1,2
320 IN=ICORR(IEL,II)
330 JN=ICORR(IEL,JJ)
340 A(IN,JN)-A(IN,JN) - AE(II,JJ)
350 CONTINUE
360 FT(IN)=FSIE(II) + FT(IN)
370 CONTINUE
372 ALPHA=ALPHA + ELEN
375 CONTINUE

C IMPOSE KINEMATIC AND NATURAL BOUNDARY CONDITIONS

376 A(1,1)=.
377 A(1,2)=0.
378 FT(i)=O.
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379 FT(NSNP)=FT(NSNP) -4.
380 M1l
390 IDGT=-3
400 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE AU = F

410 CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
420 DO 440 NEW1-,NSNP
430 U(NEW)=FT(NEW)
440 CONTINUE
450 RETURN
460 END
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C ***3k *. : ~~:************************
C * SUBROUTINE UX2EXT *
C **
C * THIS SUBROUTINE COMPUTES THE VALUE OF U=X**2 AT THE SPECIFIED *
C * NODAL POINTS FOR MAIN PROGRAM LINI. *
C

100 SUBROUTINE UX2EXT
110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),

:ELEN,ICORR(100,2) ,NEL,NSNP
130 DO 150 NN = 1,NSNP
140 UEXT(NN) = COORD(NN)**2
150 CONTINUE
160 RETURN
170 END
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SOLUTION OF U" = 2. USING CONSISTENT FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF

0.000 0.0000 0.0000 0.0

0.200 0.0400 0.0400 0.0

0.400 0.1600 0.1600 0.0

0.600 0.3600 0.3600 0.0

0.800 0.6400 0.6400 0.0

1.000 1.0000 1.0000 0.0

1.200 1.4400 1.4400 0.0

1.400 1.9600 1.9600 0.0

1.600 2.5600 2.5600 0.0

1.800 3.2400 3.2400 0.0

2.000 4.0000 4.0000 0.0
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C * PROGRAM LIN2 *
C * *
C * THIS PROGRAM SOLVES THE DIFFERENTIAL EQUATION U" = 6X, 0<X<2 *
C U(0)=O; U'(2)=12 WITH UEXACT=U**3. *
C

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
:ELEN,ICORR(100,2) ,NEL,NSNP

C INPUT NUMBER OF ELEMENTS AND TOTAL LENGTH OF DOMAIN

120 PRINT*,'INPUT NUMBER OF ELEMENTS DESIRED AND TOTAL LENGTH.'
130 READ(6,*) NEL,TLEN

C CALCULATE NUMBER OF NODAL POINTS AND DEFINE LEFT BOUNDARY OF
C DOMAIN

135 NSNP=NEL+1
150 COORD(1)=O.

C DETERMINE ELEMENT LENGTH, LOCAL TO GLOBAL NODAL POINT
C CORRESPONDENCE, AND X-COORDINATE OF EACH NODAL POINT

155 ELEN--TLEN/FLOAT(NEL)
160 DO 169 IEL=I,NEL
162 ICORR(IEL,1)=IEL
163 ICORR( IEL,2)=IEL+1
164 COORD( IEL+1 )=COORD(IEL)+ELEN
169 CONTINUE

C CALL SUBROUTINE SYM2A TO DETERMINE A MATRIX AND F VECTOR AND SOLVE
C THE LINEAR SYSTEM OF EQUATIONS AU = F

170 CALL SYM2A

C CALL SUBROUTINE UX3EXT TO DETERMINE EXACT SOLUTION

190 CALL UX3EXT

C CALL SUBROUTINE OUTLIN TO OUTPUT RESULTS

200 CALL OUTLIN
210 END
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C * SUBROUTINE SYM2A *
C * *
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *
C * PROGRAM LIN2 AND SOLVES THE LINEAR SET OF EQUATIONS AU = F. *
C

100 SUBROUTINE SYM2A
110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),

:ELEN,ICORR(100,2) ,NEL,NSNP
120 DIMENSION AE(2,2), FS1E(2), FS2E(2), WKAREA(40600)

C ZERO OUT A MATRIX AND F VECTOR

140 DO 210 IZ = 1,NSNP
150 FT(IZ) = 0.
160 DO 200 JZ = 1,NSNP
170 A(IZ,JZ) = 0.
200 CONTINUE
210 CONTINUE
213 ALPHA=0.
214 PRINT*,'WHAT TYPE OF FORCING FUNCTION IS TO BE USED?'
215 PRINT*,'MIDPOINT = 1; 1/4 -3/4 APPROX = 2; CONSISTENT = 3'
216 READ(6,*) NFF

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

217 DO 375 IEL=1,NEL

C DETERMINE ELEMENTAL A MATRIX AND ELEMENTAL F VECTOR

220 AE(1,1)=1./ELEN
230 AE(1,2)=(-1./ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(1,1)
263 IF (NFF.EQ.1) THEN
264 FS1E(1)=3. *ELEN*(ALPHA+ELEN/2.)
265 FS1E(2)=FS1E(1)
266 ELSEIF (NFF.EQ.2) THEN
267 FSIE(1)=3.*ELEN*(ALPHA+ELEN/4.)
268 FS1E(2)=3.*ELEN*(ALPHA+3.*ELEN/4.)
269 ELSE
270 FSE( 1)=3. *ALPHA*ELEN+ELEN**2
271 FSIE(2)=3. *ALPHA*ELEN+2. *(ELEN**2)
272 ENDIF

C DISTRIBUTE AE MATRICES AND FE VECTORS INTO SYSTEM A MATRIX AND F
C VECTOR

300 DO 370 II=1,2
310 DO 350 JJ=1,2
320 IN=ICORR(IEL,II)
330 JN=ICORR( IEL,JJ)
340 A(IN,JN)=A(IN,JN) - AE(II,JJ)
350 CONTINUE
360 FT(IN)=FS1E(II) + FTIN)
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370 CONTINUE
372 ALPHA=ALPHA + ELEN
375 CONTINUE

C IMPOSE KINEMATIC AND NATURAL BOUNDARY CONDITIONS

376 A(1,1)=.
377 A(1,2)=0.
378 FT(1)=O.
379 FT(NSNP)=FT(NSNP)-12.
380 M=l
390 IDGT=3
400 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE AU = F

410 CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
420 DO 440 NEW=1,NSNP
430 U(NEW)=FT(NEW)
440 CONTINUE
450 RETURN
460 END
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C * SUBROUTINE UX3EXT *
C * *
C * THIS SUBROUTINE COMPUTES THE VALUE OF U=X**3 AT THE SPECIFIED *
C * NODAL POINTS FOR MAIN PROGRAM LIN2. *
C

100 SUBROUTINE UX3EXT
110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),

:ELEN,ICORR(100,2),NEL,NSNP
130 DO 150 NN = 1,NSNP
140 UEXT(NN) = COORD(NN)**3
150 CONTINUE
160 RETURN
170 END
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SOLUTION OF U" = 6X USING LUMPED MIDPOINT FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF

0.000 0.0000 0.0000 0.0

0.200 0.0080 0.0120 50.0

0.400 0.0640 0.0720 12.5

0.600 0.2160 0.2280 5.6

0.800 0.5120 0.5280 3.1

1.000 1.0000 1.0200 2.0

1.200 1.7280 1.7520 1.4

1.400 2.7440 2.7720 1.0

1.600 4.0960 4.1280 0.8

1.800 5.8320 5.8680 0.6

2.000 8.0000 8.0400 0.5
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SOLUTION OF U" = 6X USING 1/4 - 3/4 LUMPED FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF

0.000 0.0000 0.0000 0.0

0.200 0.0080 0.0060 -25.0

0.400 0.0640 0.0600 -6.3

0.600 0.2160 0.2100 -2.8

0.800 0.5120 0.5040 -1.6

1.000 1.0000 0.9900 -1.0

1.200 1.7280 1.7160 -0.7

1.400 2.7440 2.7300 -0.5

1.600 4.0960 4.0800 -0.4

1.800 5.8320 5.8140 -0.3

2.000 8.0000 7.9800 -0.2
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SOLUTION OF U" = 6X USING CONSISTENT FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF

0.000 0.0000 0.0000 0.0

0.200 0.0080 0.0080 0.0

0.400 0.0640 0.0640 0.0

0.600 0.2160 0.2160 0.0

0.800 0.5120 0.5120 0.0

1.000 1.0000 1.0000 0.0

1.200 1.7280 1.7280 0.0

1.400 2.7440 2.7440 0.0

1.600 4.0960 4.0960 0.0

1.800 5.8320 5.8320 0.0

2.000 8.0000 8.0000 0.0
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C .. A A A A %  A . ,.****** *****************--********r
C * PROGRAM LIN3 *
C * *
C * THIS PROGRAM SOLVES THE DIFFERENTIAL EQUATION U" = 12X**2. *
C * 0 < X < 2 U(O)=0; U'(2)=32 WITH UEXACT=X**4 *
C

110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),
:ELEN,ICORR( 100,2),NEL,NSNP

C INPUT NUMBER OF ELEMENTS AND TOTAL LENGTH OF DOMAIN

120 PRINT*,'INPUT NUMBER OF ELEMENTS DESIRED AND TOTAL LENGTH.'
130 READ(6,*) NEL,TLEN

C CALCULATE NUMBER OF NODAL POINTS AND DEFINE LEFT BOUNDARY OF
C DOMAIN

135 NSNP=NEL+1
150 COORD(i)=0.

C DETERMINE ELEMENT LENGTH, LOCAL TO GLOBAL NODAL POINT
C CORRESPONDENCE, AND X-COOFDINATF OF EACH NODAL POINT

155 ELEN--TLEN/FLOAT(NEL)
160 DO 169 IEL=1,NEL
162 ICORR( IEL, 1)=IEL
163 ICORR( IEL,2)=IEL+1
164 COORD( IEL+1)=COORD(IEL)+ELEN
169 CONTINUE

C CALL SUBROUTINE SYM3A TO DETERMINE A MATRIX AND F VECTOR AND SOLVE
C THE LINEAR SYSTEM OF EQUATIONS AU = F

170 CALL SYM3A

C CALL SUBROUTINE UX4EXT TO DETERMINE EXACT SOLUTION

190 CALL UX4EXT

C CALL SUBROUTINE OUTLIN TO OUTPUT RESULTS

200 CALL OUTLIN
210 END
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C * SUBROUTINE SYM3A *
C * *
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *
C * PROGRAM LIN3 AND SOLVES THE LINEAR SET OF EQUATIONS AU = F. *
C

100 SUBROUTINE SYM3A
110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),

ELEN,ICORR(100,2) ,NEL,NSNP
120 DIMENSION AE(2,2), FSIE(2), FS2E(2), WKAREA(40600)

C ZERO OUT A MATRIX AND F VECTOR

140 DO 210 IZ = 1,NSNP
150 FT(IZ) = 0.
160 DO 200 JZ = 1,NSNP
170 A(IZ,JZ) = 0.
200 CONTINUE
210 CONTINUE
213 ALPHA=0.
214 PRINT*,'WHAT TYPE OF FORCING FUNCTION IS TO BE USED?'
215 PRINT*,'MIDPOINT = 1; 1/4 -3/4 APPROX = 2; CONSISTENT 3'
216 READ(6,*) NFF

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

217 DO 375 IEL=1,NEL

C DETERMINE ELEMENTAL A MATRIX AND ELEMENTAL F VECTOR

220 AE( 1, 1)=l./ELEN
230 AE(1,2)=(-I./ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(1,1)
263 IF (NFF. EQ. 1) THEN
264 FS1E( I)=6. *ELEN*(ALPHA+ELEN/2. )**2
265 FSIE(2)=FSE(1)
266 ELSEIF (NFF.EQ.2) THEN
267 FS1E(1)=6.*ELEN(ALPHA+ELEN/4. )**2
268 FSIE(2)=6.*ELEN*(ALPHA+3.*ELEN/4. )**2
269 ELSE
270 FS1E( 1)=6. *(ALPHA**2)*ELEN+4. *ALPHA*(ELEN**2)+ELEN**3
271 FS1E(2)=6. *(ALPHA**2)*ELEN+8. *ALPHA*(ELEN**2)+3. *ELEN**3
272 ENDIF

C DISTRIBUTE AE MATRICES AND FE VECTORS INTO SYSTEM A MATRIX AND F
C VECTOR

300 DO 370 II=1,2
310 DO 350 JJ-1,2
320 IN=ICORR(IEL,II)
330 JN=ICORR(IEL,JJ)
340 A(IN,JN)=A(IN,JN) - AE(II,JJ)
350 CONTINUE
360 FT(IN)=FSE(II) + FT(IN)
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370 CONTINUE
372 ALPI{A=ALPHA + ELEN
375 CONTINUE

C IMPOSE KINEMATIC AND NATURAL BOUNDARY CONDITIONS

376 A(1,1)=1.
377 A(1,2)=O.
378 FT(1)0O.
379 FT(NSNP)=FT(NSNP)-32.
380 M1l
390 IDGT-=3
400 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE AU = F

410 CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
420 DO 440 NEW=1,NSNP
430 U(NEW)=FT(NEW)
440 CONTINUE
450 RETURN
460 END
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C * SUBROUTINE UX4EXT fit
C * *
C * THIS SUBROUTINE COMPUTES THE VALUE OF U=X**4 AT THE SPECIFIED *

C * NODAL POINTS FOR MAIN PROGRAM LIN3. *

C

100 SUBROUTINE UX4EXT
110 COMMON A(100,100),FT(100),U(100),UEXT(100),UDIF(100),COORD(100),

ELEN,ICORR(100,2),NEL,NSNP
130 DO 150 NN = 1,NSNP
140 UEXT(NN) = COORD(NN)**4
150 CONTINUE
160 RETURN
170 END
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SOLUTION OF U" = 12X**2 USING MIDPOINT LUMPED FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF

0.000 0.0000 0.0000 0.0

0.200 0.0016 0.0184 1050.3

0.400 0.0256 0.0608 137.5

0.600 0.1296 0.1848 42.6

0.800 0.4096 0.4864 18.8

1.000 1.0000 1.1000 10.0

1.200 2.0736 2.1984 6.0

1.400 3.8416 3.9928 3.9

1.600 6.5536 6.7328 2.7

1.800 10.4976 10.7064 2.0

2.000 16.0000 16.2400 1.5
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SOLUTION OF U" = 12X**2 USING 1/4 - 3/4 LUMPED FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF

0.000 0.0000 0.0000 0.0

0.200 0.0016 0.0046 187.8

0.400 0.0256 0.0296 15.7

0.600 0.1296 0.1326 2.3

0.800 0.4096 0.4096 0.0

1.000 1.0000 0.9950 -0.5

1.200 2.0736 2.0616 -0.6

1.400 3.8416 3.8206 -0.5

1.600 6.5536 6.5216 -0.5

1.800 10.4976 10.4526 -0.4

2.000 16.0000 15.9400 -0.4
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SOLUTION OF U" = 12X**2 USING CONSISTENT FORCING FUNCTION

X-COORD U EXACT U FEM % DIFF

0.000 0.0000 0.0000 0.0

0.200 0.0016 0.0016 0.1

0.400 0.0256 0.0256 0.0

0.600 0.1296 0.1296 0.0

0.800 0.4096 0.4096 0.0

1.000 1.0000 1.0000 0.0

1.200 2.0736 2.0736 0.0

1.400 3.8416 3.8416 0.0

1.600 6.5536 6.5536 0.0

1.800 10.4976 10.4976 0.0

2.000 16.0000 16.0000 0.0
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C ***i****
C *SUBROUTINE OUTLIN*
C **
C * TIS SUBROUTINE COMPUTES THE PERCENT ERROR BETWVEEN THE EXACT *

C * AND FEll VALUES OF U AND OUTPUTS THE APPROPRIATE INFORMATION *

C * FOR MAIN PROGRAMS LINI, LIN2, AND LIN3.*
c :::A:.. ....... **************************

100 SUBROUTINE OUTLIN
110 COMMON A(100,100) ,FT(100 ,U(100) ,UEXT(100) ,UDIF(100),COORD(100),

ELEN,ICORR( 100,2) ,NEL,NSNP

C COMPUTE PERCENT ERROR AT EACH NODAL POINT

120 DO 150 IK=2,NSNP
130 UDIF(IK)=100. *CU(IK)-UEXT(IK))/UEET(IK)
150 CONTINUE
160 UDIF(1)=U(1)-UEXT(l)

C OUTPUT RESULTS TO THE SCREEN AND TO A FILE

170 WRITE(6,180)
175 WRITE(30,180)
180 FORMAT(/,lX,'X-COORD',4X,'U EXACT' ,4X,'U FEM',6X,'% 111FF')
190 WRITE(6,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
195 WRITE(30,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
200 FORMAT(/,2X,F5. 3,5X,F7. 4,3X,F7. 4,4X,F6. 1)
230 RETURN
240 END
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APPENDIX C. LINEARIZATION VECTORS FOR CONSTANT
LINEARIZATION TECHNIQUE

For this analysis, h(u') in equation (3.6) is replaced by (u')2 and the element
linearization vector becomes

= cg(*)2d (C.I)

The three approximations of this integral outlined in III.B. 1 are now determined.

Midpoint Lumped Approximation

Replacing h(u') in equation (3.7) with (u')2 yields

* = ( ( + (u j, 1)1 (C.2)
24

1,14 - 3/4 Lumped Approximation

Replacing h(u*) in equation (3.8.d) with (u)" yields

22 1(U0)i + L (3J+ lA
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Linear Approximation

Replacing h(u') with (u*)2 in equation (3.9.b) gives

=fy~ }(u;*)i( I- -~ 2+ (Uj + ))( d u ~~ 2

* 21

ie , (u,)+ (uj*)(uji)+ A i~)

47T 6 + 142
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APPENDIX D. LINEARIZATION MATRICES FOR THE CLASSICAL

LINEARIZATION TECHNIQUE

For this analysis, h(u') in equation (3.10) is replaced by u and the element

linearization matrix integral becomes

,f]eggTu*d (D.1)

The two approximations of this integral outlined in III.B.2 are now determined.

Midpoint Lumped Approximation

Replacing h(u') in equation (3.11) with u' yields

u* ) + ( (z) , + )e[ ] (D.2)
2 1

Linear Approximation

Replacing h(u*) with V' in equation (3.12) gives

I= 1 ) 141/ "' (4U )Qul -' ) + (7+ ~ 4 4' )),~(P3-- fo
"" ;- I + ))d

__ " 11 leU le+(; ~ (2i(J.)

f2 (,;)i+(u;+.), (uj+)+(uj +,)j 1
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APPENDIX E. PROGRAM LISTINGS FOR CONSTANT

LINEARIZATION

C ........ *1 ..*******.....**** *************************************
C * PROGRAM NU2CAN *
C * THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL *
C * EQUATION: *
C * U" - U**2 = 6 - 9X**4; UEXACT=3X**2 WITH VARIABLE DOMAIN *
C * TREATING THE U**2 TERM AS AN EXCITATION AND TAKING IT TO THE *
C * RIGHT SIDE OF THE EQUATION. *
C * THE USER SELECTS: *
C * 1) NUMBER OF ELEMENTS *
C * 2) SIZE OF DOMAIN *
C * 3) X AND U(X) AT THE LEFT BOUNDARY *
C * 4) U(X) OR U' (X) AT THE RIGHT BOUNDARY *
C * 5) ITERATION STRATEGY FOR DETERMINING U* *
C * 6) APPROXIMATION TECHNIQUE FOR THE EXCITATION INTEGRAL *

110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),
:UEXT(100) ,UDIF( 100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN, ICORR(100,2) ,NEL,NSNP, ITYPE

115 CONV. 0001

C READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

C CALCULATE NUMBER OF NODAL POINTS

135 NSNP-NEL+1

C DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN--TLEN/FLOAT(NEL)

C ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
C EACH NODE

160 DO 169 IEL1=,NEL
162 ICORR( IEL, 1)=IEL
163 ICORR( IEL,2)=IEL+1
165 COORD(IEL+1)--COORD(IEL) + ELEN
169 CONTINUE

C CALL SUBROUTINE NU2CAM TO CREATE A MATRIX AND F VECTOR

170 CALL NU2CAM

C CALL SUBROUTINE NU2CAI TO PERFORM SOLUTION ITERATION

180 CALL NU2CAI(IET)
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C CALL SUBROUTINE U2EXTA TO COMPUTE EXACT SOLUTION U=3X**2

190 CALL U2EXTA

C CALL SUBROUTINE OUTPUT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

200 CALL OUTPUT(CPUSTAR,IET)
210 END
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C * SUBROUTINE NU2CAM *
C * *
C * THIS SUBROUTINE COMPUTES THE A MATRIX AN1 F VECTOR FOR MAIN *
C * PROGRAM NU2CAN. *

100 SUBROUTINE NU2CAM
110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR(100,2) ,NEL,NSNP,ITYPE

120 DIMENSION AE(2,2), FS1E(2), FS2E(2)
122 IF (TLEN. LE. 1. 0) THEN
123 PRINT*,'CHOOSE BOUNDARY FOR INITIAL GUESS:'
124 PRINT*,'1 = LEFT ESSENTIAL BOUNDARY CONDITION'
125 PRINT*,'2 = RIGHT ESSENTIAL BOUNDARY CONDITION'
126 PRINT*,'3 = AVERAGE OF THE TWO ESSENTIAL BOUNDARY CONDITIONS'
127 READ(6,*) INITGS
128 ELSE
129 CONTINUE
130 ENDIF
140 DO 210 IZ = 1,NSNP

C ZERO OUT STEADY FORCE VECTOR

150 FS(IZ) = 0.

C DETERMINE INITIAL VALUE OF USTAR TO BEGIN THE ITERATION PROCESS

157 IF (INITGS.EQ.1) THEN
158 U(IZ)=ULBC
159 UOLD(IZ)=ULBC
160 ELSEIF (INITGS.EQ.2) THEN
161 U(IZ)=URBC
162 UOLD(IZ)=URBC
163 ELSEIF (INITGS.EQ.3) THEN
164 U( IZ)=(ULBC+URBC)/2.
165 UOLD(IZ)=U(IZ)

166 ELSE
167 U(IZ)=SQRT(ABS(9.*COORD(IZ)**4 - 6.))
168 UOLD(IZ)=U(IZ)
169 ENDIF

C ZERO OUT A MATRIX

170 DO 200 JZ = 1,NSNP
180 A(IZ,JZ) = 0.
200 CONTINUE
210 CONTINUE

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

213 ALPHA=0.
215 DO 375 IEL=1,NEL
220 AE(1,1)=i./ELEN
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230 AE(1,2)=(-l./ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(l,1)
260 FS1E( 1)3. *ELN
270 FS1E(2)=FSlE(1)
272 Fl=(ALP{A**4)*ELEN/2.
274 F2=2. *(ALPHA**3)*(ELEN**2)/3.
276 F3=(ALP{A**2)*(ELEN**3)/2.
278 F4=ALPHA*(ELEN**4)/5.
280 F5=(ELEN**S)/30.
287 FS2E(1)=( -9. )*(Fl + F2 + F3 + F4 + F5)
290 FS2EC2)=(-9)*(Fl + 2.*F2 + 3.*F3 + 4.*F4 + 5.*F5)
300 DO 370 11=1,2
310 DO 350 JJ=1,2
320 IN=ICORR(IEL,II)
330 JN=ICORR(IEL,JJ)
340 A(IN,JN)=A(IN,JN) - AE(II,JJ)
350 CONTINUE
360 FS(IN)=FS1E(II) + FS2E(II) + FS(IN)
370 CONTINUE
372 ALPI{A=ALPI{A + ELEN
375 CONTINUE
420 RETURN
430 END
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C
C * SUBROUTINE NU2CAI *
C * *
C * THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *

C * MAIN PROGRAM NU2CAN. *
C

100 SUBROUTINE NU2CAI(IET)
102 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),

:UEXT(100) ,UDIF(100) ,COORD(100) ,ELEN,CONV,ELTIME,ULBC ,URBC,
:TLEN,ICORR 1 00,2),NEL,NSNP,ITYPE

104 DIMENSION WKAREA(40600), DIF(100), FUE(2), USTAR(100)

C SELECT METHOD OF DETERMINING USTAR

105 PRINT*,'SELECT METHOD OF U* DETERMINATION.'
106 PRINT*,'1: U* = U'
107 PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,*) METHU

C SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

116 PRINT*,'SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTJR.'
117 PRINT*,'1: MIDPOINT APPROXIMATION'
118 PRINT*,'2: 1/4 - 3/4 APPROXIMATION'
119 PRINT*, '3: LINEAR'
120 READ(6,*) METHFU

C CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS

121 CALL SETIME

C BEGIN ITERATION PROCESS

122 DO 450 ITER=1,200

C RESET VALUE OF UNSTEADY F VECTOR TO ZERO

123 DO 138 IU=1,NSNP
124 FU(IU)=0.

C DETERMINE VALUE OF U* AT EACH NODE

125 IF (ETHU.EQ.1) THEN
126 USTAR(IU)=U(IU)
127 ELSEIF (METHU.EQ.2) THEN
128 USTAR(IU)-(U(IU)+UOLD(IU))/2.
132 ENDIF
138 CONTINUE

C DETERMINE UNSTEADY FORCE VECTOR

140 DO 210 IEL=1,NEL
145 IF (METIHFU. EQ. 1) THEN
146 FUE( 1)=(ELEN/2. )*((USTAR(IEL)+USTAR(IEL+1))/2. )**2
147 FUE(2)=FUE(1)
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149 ELSEIF (METHFU.EQ.2) THEN
151 FUE(1)=(ELEN/2. )*(3.*USTAR(IEL)/4. + USTAR(IEL+1)/4. )**2
152 FUE(2)=(ELEN/2. )*(USTARCIEL)/4. + 3* *USTAJR(IEL+1)/4.)**2
153 ELSE
154 FUEC 1)=ELEN*(USTAR( IEL)**2/4. +USTAR( IEL)*USTAR( IEL+1)/6.

* + USTAR(IEL+1)**2/12.)
155 FUE(2)=ELEN*(USTAR(IEL)**2/12. + USTAR(IEL)*USTAR(IEL+1)

* /6. + USTAR(IEL+1)**2/4.)
156 ENDIF
170 DO 200 11=1,2
180 IN=ICORR(IEL,II)
190 FU(IN)=FUE(II) + FU(IN)
200 CONTINUE
210 CONTINUE

C DETERMINE TOTAL FORCE VECTOR

220 DO 240 NP=1,NSNP
230 FTCNP)=FS(NP)+FU(NP)
235 UOLD(NP)=U(NP)
240 CONTINUE

C IMPOSE BOUNDARY CONDITIONS

241 A(1,1)1l.
242 A(1,2)=O.
243 FT(1)ULBC
244 IF ( ITYPE. EQ. 1) THEN
245 A(NSNP,NSNP-1)=0.
246 A(NSNP,NSNP)=1.
247 FTC NSNP)=URBC
248 ELSE
249 FTC NSNP )=FT( NSNP) -URBC*TLEN
250 ENDIF
255 M1l
260 IDGT=-3
270 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
290 DO 310 NEW=1,NSNP
300 U(NEW)=FT( NEW)

*C WRITE(*,*) 'UNEW= U(NEW)

C TEST FOR CONVERGENCE

306 DIF(NEW)=ABS(U(NEW) -UOLD(NEW))
310 CONTINUE
320 DIFMAX=DIF(1)
325 NMAX=1
330 DO 390 1J=1,NEL
340 IF (DIF(IJ+1).GE.DIF(IJ)) THEN
350 DIFMAX=DIF( IJ+1)
355 NMAX=IJ+1
360 ELSE



370 CONTINUE
380 ENDIF fit
390 CONTINUE
405 IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
410 GO TO 451
420 ELSE
430 CONTINUE
440 ENDIF
450 CONTINUE
451 CONTINUE

C CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS

452 CALL GETIMIIEET)

C OUTPUT HEADER INFORMATION

462 WITE(,464

462 WRITE(3,464)

464 FORMAT(lX,'EQUATION: U" - U**2 = 6 - 9X**4')
465 IF (ITYPE. EQ. 1) THEN
466 WRITE(6,468) COORD(l),ULBC,COORD(NSNP),URBC
467 WRITE(30,468) COORD(1),ULBC COORD(NSNP),URBC
468 FORMAT(1X,'B.C.: U(',Fi.O,')&,F2.O,'; U(',F3.0,")=',F4.O,/)
469 ELSE
470 WRITE(6,472) COORD(1) ,ULBC,COORD(NSNP),URBC
471 WRITE(30,472) COORD(l),ULBCCOORD(NSNP),URBC
472 FORMAT(1X,'B.C.: U(',F2.0,')&',F2.O,';DU/DX(',F3.0,')=',F4.O,/)
473 ENDIF
475 IF (METHU. EQ. 1) THEN
476 WRITE(6,478)
477 WRITE(30,478)
478 FORMAT(1X,'ITERATION METHOD: U*=U',/)
479 ELSE
480 WRITE(6,482)
481 WRITE(30,482)
482 FORMAT( iX,' ITERATION METHOD: U*=(U+UOLD)/2' , )
483 ENDIF
488 IF (METHFU. EQ. 1) THEN
489 WRITE(6,491)
490 WRITE(30,491)
491 FORMAT(1X,'METHOD OF EXCITATION INTEGRAL EVALUATION: MIDPOINT',/1)
492 ELSEIF (METHFU.EQ.2) THEN
493 WRITE(6,495)
494 WRITE(30,495)
495 FORMAT(1X,'METHOD OF EXCITATION INTEGRAL EVALUATION: 1/4-3/4',/)
496 ELSE
497 WRITE(6,499)
498 WRITEC 30,499)
499 FORMAT(1X,'METHOD OF EXCITATION INTEGRAL EVALUATION: LINEAR',/)
500 ENDIF
502 IF (ITER.GE.200) THEN
503 WRITE(6,505)
504 WRITE(30,505)
505 FORMAT(1X,'CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
506 ELSEIF (ABSCU(NMAX)).GT.(10.**20).OR.ABS(UCNSNP-1)).GT.
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:(1O.**20)) THEN
507 WRITEC6,509)
508 WRITE(30,509)
509 FORMAT(1X,'SOLUTION PROCESS DIVERGES.'I)
510 ELSE
511 WRITEC6,520) ITER,NEL
515 WRITEC3O,520) ITER,NEL
520 FORMAT(1X,'CONVERGENCE OBTAINED AFTER ',13,' ITERATIONS USING '

13,' ELEMENTS.' ,/)
525 ENDIF
530 RETURN
540 END
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C
C * SUBROUTINE U2EXTA *
C * *
c * THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=3X**2, FOR *
C * MAIN PROGRAM NU2CA AT THE SPECIFIED NODAL POINTS. *

100 SUBROUTINE U2EXTA
110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR(100,2),NEL,NSNP,ITYPE

130 DO 150 NN = 1,NSNP
140 UEXT(NN) = 3. *COORD(NN)**2
150 CONTINUE
160 RETURN
170 END
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C AAA. ;..:AA ;.AAAA ;:A A .. A AAA *****
C * PROGRAM NU2CBN *
C * THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL *
C * EQUATION: *
C * U" + U**2 = 60X + 100X**6; UEXACT=-1OX**3 WITH VARIABLE *
C * DOMAIN, TREATING THE U**2 TERM AS AN EXCITATION AND TAKING IT *
C * TO THE RIGHT SIDE OF THE EQUATION. THE USER SELECTS: *
C * 1) NUMBER OF ELEMENTS *
C * 2) SIZE OF DOMAIN *
C * 3) X AND U(X) AT THE LEFT BOUNDARY *
C * 4) U(X) OR U'(X) AT THE RIGHT BOUNDARY *
C * 5) ITERATION STRATEGY FOR DETERMINING U* *
C * 6) APPROXIMATION TECHNIQUE FOR THE EXCITATION INTEGRAL *
C . . . . . ..A , A . A . . .',

110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),
:UEXT(100) ,UDIF( 100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR( 100,2),NEL,NSNP,ITYPE

115 CONV=. 0001

C READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

C CALCULATE NUMBER OF NODAL POINTS

135 NSNP=NEL+l

C DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN--TLEN/FLOAT(NEL)

C ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
C EACH NODE

160 DO 169 IEL=I,NEL
162 ICORR( IEL, 1)=IEL
163 ICORR( IEL,2)=IEL+1
164 COORD( IEL+1)--COORD( IEL)+ELEN
169 CONTINUE

C CALL SUBROUTINE NU2CBM TO CREATE A MATRIX AND F VECTOR

170 CALL NU2CBM

C CALL SUBROUTINE NU2CBI TO PERFORM SOLUTION ITERATION

180 CALL NU2CBI(IET)

C CALL SUBROUTINE U2EXTB TO COMPUTE EXACT SOLUTION U=10X**3

190 CALL U2EXTB

C CALL SUBROUTINE OUTPUT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY
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200 CALL OUTPUT(CPUSTAR,IET)
210 END
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C
C * SUBROUTINE NU2CBM *
C * *
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *
C * PROGRAM NU2CBN. *

100 SUBROUTINE NU2CBM
110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),

:UEXT( 100),UDIF( 100),COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR( 100,2),NEL,NSNP,ITYPE

120 DIMENSION AE(2,2), FS1E(2), FS2E(2)
122 IF (TLEN.LT. 1.0) THEN
123 PRINT*,'CHOOSE BOUNDARY FOR INITIAL GUESS:'
124 PRINT*,'1 = LEFT ESSENTIAL BOUNDARY CONDITION'
125 PRINT*,'2 = RIGHT ESSENTIAL BOUNDARY CONDITION'
126 PRINT*,'3 = AVERAGE OF THE TWO ESSENTIAL BOUNDARY CONDITIONS'
127 READ(6,*) INITGS
128 ELSE
129 CONTINUE
130 ENDIF
140 DO 210 IZ = 1,NSNP

C ZERO OUT STEADY FORCE VECTOR

150 FS(IZ) = 0.

C DETERMINE INITIAL VALUE OF USTAR TO BEGIN THE ITERATION PROCESS

157 IF (INITGS.EQ.1) THEN
158 U(IZ)=ULBC
159 UOLD(IZ)=ULBC
160 ELSEIF (INITGS.EQ.2) THEN
161 U(IZ)=URBC
162 UOLD(IZ)=URBC
163 ELSEIF (INITGS. EQ. 3) THEN
164 U(IZ)=(ULBC+URBC)/2.
165 UOLD(IZ)=U(IZ)

166 ELSE
167 U(IZ)=SQRT(60. *COORD(IZ) + 100.*COORD(IZ)**6)
168 UOLD(IZ)=U(IZ)
169 ENDIF

C ZERO OUT A MATRIX

170 DO 200 JZ = 1,NSNP
175 A(IZ,JZ) = 0.
200 CONTINUE
210 CONTINUE

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

213 ALPHA=O.
215 DO 375 IEL=1,NEL
220 AE(1,1)=1./ELEN
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230 AE(1,2)=(-1. /ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(l,l)
260 FSlE(1)=30.*ALPHA*ELEN + 1O.*ELEN**2
270 FS1E(2)=30.*ALPHA*ELEN + 20. *ELEN**2
272 Fl=50. *CALPHA**6)*ELEN
274 F2=1OO. *CALPHjA**5)*(ELEN**2)
276 F3=125. *(ALPHA**4)*(EIYN**3)
278 F4=100. *(ALPHA.**3)*(EEN**4)
280 F5=50. *(ALPHA**2)*(ELEN**5)
281 F6=100. *ALPHA*(ELN**6)/7.
282 F7=25. *(ELEN**7)/16.
287 FS2E(1)=F1 + F2 + P3 + F4 + F5 + F6 + F7
290 FS2E(2)=F1 + 2.*F2 + 3.*F3 + 4.*F4 + 5.*F5 +6.*F6 +7*F7
300 DO 370 11=1,2
310 DO 350 JJ-1,2
320 IN=ICORR(IEL,II) 4

330 JN=ICORR(IEL,JJ)
340 A(IN,JN)=A(IN,JN) - AE(II,JJ)
350 CONTINUE
360 FS(IN)=FS1ECII) + FS2E(II) + FS(IN)
370 CONTINUE
372 ALPHA=ALPHA + ELEN
375 CONTINUE
420 RETURN
430 END
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C * SUBROUTINE NU2CBI f *
C *
C * THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *
C * MAIN PROGRAM NU2CBN. *
C

100 SUBROUTINE NU2CBI(IET)
102 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100),COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR( 100,2),NEL,NSNP, ITYPE

104 DIMENSION WKAREA(40600), DIF(100), FUE(2), USTAR(100)

C SELECT METHOD OF DETERMINING USTAR

105 PRINT*, 'SELECT METHOD OF U* DETERMINATION.'
106 PRINT*,'1: U* = U'
107 PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,*) METHU

C SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

116 PRINT*,'SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR.'
117 PRINT*, '1: MIDPOINT APPROXIMATION'
118 PRINT*,'2: 1/4 - 3/4 APPROXIMATION'
119 PRINT*,'3: CONSISTENT'
120 READ(6,*) METHFU

C CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS

121 CALL SETIME

C BEGIN ITERATION PROCESS

122 DO 450 ITER=1,200

C RESET VALUE OF UNSTEADY F VECTOR TO ZERO

123 DO 138 IU=1,NSNP
124 FU(IU)=0.

C DETERMINE VALUE OF U* AT EACH NODE

125 IF (METHU. EQ. 1) THEN
126 USTAR( IU)=U(IU)
127 ELSE
128 USTAR( IU)=(U( IU)+UOLD(IU) )/2.
132 ENDIF
138 CONTINUE

C DETERMINE UNSTEADY FORCE VECTOR

140 DO 210 IEL=1,NEL
145 IF (METHFU. EQ. 1) THEN
146 FUE( 1)=(ELEN/2. )*((USTAR(IEL)+USTAR(IEL+1))/2. )**2
147 FUE(2)=FUE(1)
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149 ELSEIF (METHFU. EQ. 2) THEN
151 FUEC 1)=(ELEN/2. )*( 3.*USTAR( IEL)/4. + USTAR( IEL+1)/4. )**2
152 FUE(2)=(ELEN/2. )*(USTAR(IEL)/4. + 3. *USTAR(IEL+1)/4. )**2
153 ELSE
154 FUE( 1)=ELEN*(USTAR( IEL)**2/4. +USTAR( IEL)*USTAR( IEL+1)/6.

* + USTAR(IEL+1)**2/12.)
155 FUE(2)=ELEN*(USTAR(IEL)**2/12. + USTARCIEL)*USTAR(IEL+1)/6.

* + USTAR(IEL+1)**2/4.)
156 ENDIF
170 DO 200 11=1,2
180 IN=ICORR(IEL,II)
190 FU(IN)=FLIE(II) + FU(IN)
200 CONTINUE
210 CONTINUE

C DETERMINE TOTAL FORCE VECTOR

220 DO 240 NP1-,NSNP
230 FT(NP)=FS(NP)-FU(NP)
235 UOLD(NP)=U(NP)
240 CONTINUE

C IMPOSE BOUNDARY CONDITIONS

241 A(1,1)=1.
242 A(1,2)=0.
243 FT(1)=ULBC
244 IF (ITYPE.EQ. 1) THEN
245 A(NSNP,NSNP-1)=0.
246 A(NSNP,NSNP)=1.
247 FT(NSNP)=URBC
248 ELSE
249 FTC NSNP)=FT(NSNP) -URBC
250 ENDIF
255 M=1
260 IDGT=-3
270 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(A,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
290 DO 310 NEW=1,NSNP
300 U(NEW)=FTCNEW)
C WRITE(*,*) 'UNEW=',U(NEW)

C TEST FOR CONVERGENCE

306 DIF(NEW)=ABS(U(NEW) -UOLD( NEW))
310 CONTINUE
320 DIFMAX=-DIF(1)
325 NMAX1-
330 DO 390 IJ=1,NEL
340 IF (DIF(IJ+1).GE.DIF(IJ)) THEN
350 DIFMAX-DIF(IJ+1)
355 NMAX-IJ+1
360 ELSE
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370 CONTINUE
380 ENDIF
390 CONTINUE
405 IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
410 GO TO 460
420 ELSE
430 CONTINUE
440 ENDIF
450 CONTINUE
460 CONTINUE

C CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS

461 CALL GETIMEC lET)

C OUTPUT HEADER INFORMATION

462 WRITE(6,464)
463 WRITE(30,464)
464 FORMATC1X,'EQUATION: U" + U**2 =60X + 100X**6')
465 IF CITYPE.EQ.1) THEN
466 WRITE(6,468) COORD(1),ULBC,COORD(NSNP),URBC
467 WRITE(30,468) COORD(1) ULBC,COORD(NSNP),URBC
468 FORMAT(1X, B.C.: U(',F2.O,')=',F3.O,'; U(',F2.0,')=&,F4.O,/)
469 ELSE
470 WRITE(6,472) COORD(1),ULBC,COORD(NSNP),URBC
471 WRITE(30,472) COORD(1),ULBC,COORD(NSNP),URBC
472 FORMATC1X,'B.C.: U(',F2.0,')=&,F3.O,';DU/DXC',F2.0,')=&,F4.O,/)
473 ENDIF
475 IF (METHU.EQ.1) THEN
476 WRITE(6,478)
477 WRITE(30,478)
478 FORMAT(1X, 'ITERATION METHOD: U*=-U',/)
479 ELSE
480 WRITE(6,482)
481 WRITE(30,482)
482 FORMAT( iX,' ITERATION METHOD: U*--(U+UOLD)/2' ,/)
487 ENDIF
488 IF (HETHFU. EQ. 1) THEN
489 WRITE(6,491)
490 WRITE(30,491)
491 FORMAT(lX,'METHOD OF EXCITATION INTEGRAL EVALUATION: MIDPOINT' ,/)
492 ELSEIF (METHFU.EQ.2) THEN
493 WRITE(6,495)
494 WRITE(30,495)
495 FORMATC1X,'METHOD OF EXCITATION INTEGRAL EVALUATION: 1/4-3/4',/)
496 ELSE
497 WRITE(6,499)
498 WRITE(30,499)
499 FORMAT(1X,'METHOD OF EXCITATION INTEGRAL EVALUATION: LINEAR',/)
500 ENDIF
502 IF (ITER.GE.200) THEN
503 WRITE(6,505)
504 WRITE(30,505)
505 FORMAT( lX,'CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
506 ELSEIF (ABS(U(NMAX)).GT.(10.**20).OR.ABSCU(NSNP-1)).GT.
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:(1o.**20)) THEN
507 WRITE(6,509)
508 WRITE(30,509)
509 FORMAT(1X,'SOLUTION PROCESS DIVERGES.')
510 ELSE
511 WRITE(6,520) ITER,NEL
515 WRITE(30,520) ITER,NEL
520 FORMAT(1X,'CONVERGENCE OBTAINED AFTER ',13,' ITERATIONS USING ',

:13,' ELEMENTS.',/)
525 ENDIF
530 RETURN
540 END
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C
C * SUBROUTINE U2EXTB *
C * *
C * THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=1OX**3, *
C * FOR MAIN PROGRAM NU2CBN AT THE SPECIFIED NODAL POINTS. *
C

100 SUBROUTINE U2EXTB
110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100),COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR(100,2) ,NEL,NSNP,ITYPE

130 DO 150 NN = 1,NSNP
140 UEXT(NN) = 10.*COORD(NN)**3
150 CONTINUE
160 RETURN
170 END
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C * SUBROUTINE OUTPUT *
C * THIS SUBROUTINE COMPUTES THE PER CENT ERROR BETWEEN 'IE EXACJ *
C * AND FEM SOLUTIONS, CPU* FOR THE ITERATION PROCESS, AND PRINTS *
C * OUT ALL DATA IN TABULAR FORM FOR PROGRAMS NU2CAN AND NU2CBN *
C ***- .... , *************~*

100 SUBROUTINE OUTPUT(CPUSTAR,IET)
110 COMMON A(100,100),FS(100),FU(100),FT(100),U(100),UOLD(100),

: UEXT( 100),UDIF(100),COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
: TLEN,ICORR(100,2) ,NEL,NSNP,ITYPE

115 SUMDIF=0.

C CALCULATE PER CENT ERROR AT EACH NODE AND SUM THE ABSOLUTE VALUE
C OF ALL THE ERRORS

120 DO 150 IK=2,NSNP
130 UDIF( IK)=100. *(U(IK) -UEXT(IK) )/UEXT(IK)
140 SUMDIF=SUMDIF + ABS(UDIF(IK))
150 CONTINUE
160 UDIF(1)=U(1)-UEXT(1)

C COMPUTE THE ELAPSED TIME OF THE ITERATION PROCESS

164 ELTIME=IET*. 000026
165 WRITE(6,169) ELTIME
166 WRITE(30,169)ETTIME
169 FORMAT(1X,'ELAPSED TIME FOR THE ITERATION PROCESS IS ',F9.4,

*' SECONDS. ')

C OUTPUT DATA IN TABULAR FORMAT

170 WRITE(6,180)
175 WRITE(30,180)
180 FORMAT(/,1X,'X-COORD',3X,'U EXACT',3X,'U FEM',4X,'% DIFF')
190 WRITE(6,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
195 WRITE(30,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
200 FORMAT(/,2X,F5.3,5X,F7.4,3X,F7.4,4X,F5. 1)

C CALCULATE CPU* FOR THE ITERATION PROCESS

205 CPUSTAR=ELTIME*SUMDIF/NSNP
210 WRITE(6,220) CPUSTAR
215 WRITE(30,220? CPUSTAR
220 FORMAT(/,1X, CPU* FOR THE ITERATION PROCESS IS ',F9.4,' SECONDS.')
230 RETURN
240 END
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APPENDIX F. PROGRAM LISTINGS FOR CLASSICAL

LINEARIZATION

C * PROGRAM NU2KA *
C * THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL *
C * EQUATION: *
C * U" - U**2 = 6 - 9X**4; UEXACT=3X**2 WITH VARIABLE DOMAIN *
C * BY LINEARIZING THE U**2 TERM AS USTAR*U AND KEEPING IT ON THE *
C * LEFT SIDE OF THE EQUATION. THE USER SELECTS: *
C * 1) NUMBER OF ELEMENTS *
C * 2) SIZE OF DOMAIN *
C * 3) X AND U(X) AT THE LEFT BOUNDARY *
C * 4) U(X) OR U'(X) AT THE RIGHT BOUNDARY *
C * 5) ITERATION STRATEGY FOR DETERMINING U* *
C * 6) APPROXIMATION TECHNIQUE FOR THE EXCITATION INTEGRAL *

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
:UEXT( 100),UDIF( 100) ,COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR( 100,2),ITYPENEL,NSNP

115 CONV=. 0001

C READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

C CALCULATE NUMBER OF NODAL POINTS

135 NSNP=-NEL+1

C DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN--TLEN/FLOAT(NEL)

C ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
C EACH NODE

160 DO 169 IEL=1,NEL
162 ICORR(IEL,1)=IEL
163 ICORR( IEL, 2)=IEL+I
164 COORD( IEL+1)--COORD(IEL)+ELEN
169 CONTINUE

C CALL SUBROUTINE NU2CAM TO CREATE A MATRIX AND F VECTOR

170 CALL NU2KAM

C CALL SUBROUTINE NU2CAI TO PERFORM SOLUTION ITERATION

180 CALL NU2KAI(IET)
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C CALL SUBROUTINE U2EXTA TO COMPUTE EXACT SOLUTION U=3X**2

190 CALL CLEXTA 'I

C CALL SUBROUTINE OUTPUT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

200 CALL CLOTPT(CPUSTARIET)
210 END
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C
C * SUBROUTINE NU2KAM *
C * *
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *
C * PROGRAM NU2KA. *

100 SUBROUTINE NU2KAM
110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100) ,COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR(100,2),ITYPE,NEL,NSNP

120 DIMENSION AE(2,2), FS1E(2), FS2E(2)
122 IF (TLEN.LE. 1.0) THEN
123 PRINT*,'CHOOSE BOUNDARY FOR INITIAL GUESS:'
124 PRINT*,'1 = LEFT ESSENTIAL BOUNDARY CONDITION'
125 PRINT*,'2 = RIGHT ESSENTIAL BOUNDARY CONDITION'
126 PRINT*,'3 = AVERAGE OF THE TWO ESSENTIAL BOUNDARY CONDITIONS'
127 READ(6,*) INITGS
128 ELSE
129 CONTINUE
130 ENDIF
140 DO 210 IZ = 1,NSNP

C ZERO OUT STEADY FORCE VECTOR
150 FS(IZ) = 0.

C DETERMINE INITIAL VALUE OF USTAR TO BEGIN THE ITERATION PROCESS

157 IF (INITGS. EQ. 1) THEN
158 U(IZ)=ULBC
159 UOLD(IZ)=U(IZ)
160 ELSEIF (INITGS. EQ. 2) THEN
161 U(IZ)=URBC
162 UOLD(IZ)=U(IZ)
163 ELSEIF (INITGS.EQ.3) THEN
164 U( IZ)=(ULBC+URBC)/2.
165 UOLD(IZ)=U(IZ)
166 ELSE
167 U(IZ) = SQRT(ABS(9.*COORD(IZ)**4 - 6.))
168 UOLD(IZ) = U(IZ)
169 ENDIF

C ZERO OUT ALL MATRICES

170 DO 200 JZ = 1,NSNP
171 A(IZ,JZ) = 0.
175 B(IZ,JZ) = 0.
176 C(IZ,JZ) = 0.
200 CONTINUE
210 CONTINUE

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

213 ALPHA=O.
215 DO 375 IEL=1,NEL
220 AE(1,1)=1./ELEN
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230 AE(1,2)=(-1. /ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(l,l)
260 FS1E(1)=3. *ELN
270 FSlE(2)=FS1E(1)
272 Fl=(ALP{A**4)*ELEN/2.
274 F2=2. *(ALPHK**3)*(ELN**2)/3.
276 F3=(ALPHA**2)*CELEN**3)/2.
278 F4=ALPiA*( ELEN**4) /5.
280 F5=(ELENA*5)/30.
287 FS2E(1)=(-9. )*(Fl + F2 + F3 + A4 + F5)
290 FS2EC2)C(-9)*CF1 + 2.*F2 + 3.*F3 + 4.*F4 +5.*F5)
300 DO 370 11=1,2
310 DO 350 JJ=1,2
320 IN=ICORRC IEL,II)
330 JN=ICORR( IEL,JJ)
340 ACIN,JN)=A(IN,JN) - AE(II,JJ)
350 CONTINUE
360 FS(IN)=FS1E(II) + FS2E(II) + ESCIN)
370 CONTINUE
372 ALPHAALPHA + ELEN
375 CONTINUE
420 RETURN
430 END
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C
C * SUBROUTINE NU2KAI *
C * *
C * THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *
C * MAIN PROGRAM NU2KA. *

100 SUBROUTINE NU2KAI(IET)
102 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100),COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR(100,2),ITYPE,NELNSNP

104 DIMENSION WKAREA(40600), DIF(100), BE(2,2), USTAR(100), FT(100)

C SELECT METHOD OF DETERMINING USTAR

105 PRINT*, 'SELECT METHOD OF U* DETERMINATION.'
106 PRINT*,'1: U* = U'
107 PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,*) METHU

C SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

116 PRINT*,'SELECT METHOD OF DETERMINING UNSTEADY B MATRIX.'
117 PRINT*,' 1: MIDPOINT APPROXIMATION FOR U OVER THE ELEMENT.'
119 PRINT*,'2: U LINEARIZED OVER THE LENGTH OF THE ELEMENT.'
120 READ(6,*) METHBM

C CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS

121 CALL SETIME

C BEGIN ITERATION PROCESS

122 DO 450 ITER=1,200

C DETERMINE VALUE OF U* AT EACH NODE

130 DO 138 IU=1,NSNP
131 IF (METHU.EQ.1) THEN
132 USTAR(IU)=U(IU)
133 ELSE
134 USTAR( IU)=(U( IU)+UOLD(IU) )/2.
137 ENDIF
138 CONTINUE

C DETERMINE UNSTEADY ELEMENT B MATRIX

140 DO 210 IEL=1,NEL
145 IF (METHBM.EQ.1) THEN
146 BE(1,1)=(ELEN/6. )*(USTAR(IEL)+USTAR(IEL+1))
147 BE( 1,2)=(ELEN/12. )*(USTAR(IEL)+USTAR(IEL+1))
148 BE(2,1)=BE(1,2)
149 BE(2,2)=BE(l,1)
150 ELSE
151 BE( 1,1)=(ELEN/12. )*(3. *USTAR(IEL) + USTAR(IEL+1))
152 BE(1,2)=(ELEN/12. )*(USTAR(IEL) + USTAR(IEL+1))
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153 BE(2l1)=BE(1,2)
154 BEC2,2)C(ELEN/12. )*(USTAR(IEL) + 3. *USTARCIEL+1))
156 ENDIF
170 DO 200 11=1,2
175 DO 195 JJ=1,2
180 IN=ICORR( IEL, II)
185 JN=ICORR( IEL,JJ)
190 B(IN,JN)=BE(II,JJ) + B(IN,JN)
195 CONTINUE
200 CONTINUE
210 CONTINUE

C DETERMINE TOTAL SYSTEM MATRIX

220 DO 240 IP=1l,NSNP
221 DO 232 JP1-,NSNP
230 C(IP,JP)=A(IP,JP)-B(IP,JP)

C RESET B MATRIX TO ZERO AND LET UOLD=U AND Fr-FS

231 B(IP,JP)0O.
232 CONTINUE
235 UOLDCIP)=U(IP)
236 FT(IP)=FS(IP)
240 CONTINUE

C IMPOSE BOUNDARY CONDITIONS

241 C(1,1)=1.
242 C(1,2)=0.
243 FTC 1)=ULBC
244 IF (ITYPE.EQ.1) THEN
245 C(NSNPNSNP-1)=0.
246 C(NSNP,NSNP)=l.
247 FT(NSNP)=URBC
248 ELSE
249 FT(NSNP)=FT(NSNP) -URBC
250 ENDIF
255 M=1l
260 IDGT3
270 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(C,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
290 DO 310 NEW1-,NSNP
300 U(NEW)=FT(NEW)
C WRITE(*,*) 'UNEW=-',U(NEW)

C TEST FOR CONVERGENCE

306 DIF(NEW)=ABS(U(NEW) -UOLD(NEW))
310 CONTINUE
320 DIFMAXDIF(1)
325 NMAXt.
330 DO 390 IJ=1,NEL
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340 IF (DIF(IJ+1).GE.DIF(IJ)) THEN
350 DIFMAX=DIF( IJ+1)
355 NMAX=IJ+1
360 ELSE
370 CONTINUE
380 ENDIF
390 CONTINUE
405 IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
410 GO TO 460
420 ELSE
430 CONTINUE
440 ENDIF
450 CONTINUE
460 CONTINUE

C CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS

461 CALL GETIMEC lET)

C OUTPUT HEADER INFORMATION

462 WRITE(6,464)
463 WRITE(30,464)
464 FORHAT(1X,'EQUATION: U" - U**2 = 6 - 9X**4')
465 IF (ITYPE. EQ. 1) THEN
466 WRITEC 6,468) COORD 1) ,ULBC,COORD(NSNP) ,URBC
467 WRITE(30,468) COORD(l),ULBC COORD(NSNP),URBC
468 FORHAT(lX,'B.C.: U(',Fi.0,')&',F2.0,'; U(',F2.0,')=',F4.0,/)
469 ELSE
470 WRITE(6,472) COORD(1) ,ULBC,COORD(NSNP) ,URBC
471 WRITE(30,472) COORD(t) ,ULBC COORD(NSNP) ,URBC
472 FORMAT(1XB.C.: U(',F2.0,')=',F2.0,';DU/DX(',F2.0,')=',F4.0,/)
473 ENDIF
475 IF (METHU.EQ.1) THEN
476 WRITE(6,478)
477 WRITE(30,478)
478 FORMAT(1X,'ITERATION METHOD: U*-U',/)
479 ELSE
480 WRITE(6,482)
481 WRITE(30,482)
482 FORMAT( iX,' ITERATION METHOD: U*-(U+UOLD)/2' ,/)
487 ENDIF
488 IF (METHBM. EQ. 1) THEN
489 WRITE(6,491)
490 WRITE(30,491)
491 FORMAT(1X,'METHOD OF B MATRIX INTEGRAL EVALUATION: MIDPOINT',/)
496 ELSE
497 WRITE6,499)
498 WRITE(30,499)
499 FORMAT(1X,'METHOD OF B MATRIX INTEGRAL EVALUATION: LINEAR',/)
500 ENDIF
502 IF (ITER.GE.200) THEN
503 WRITE(6,505)
504 WRITE(30,505)
505 FORMAT(lX,'CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
506 ELSEIF (ABS(U(NMAX)).GT.(10.**20).OR.ABS(U(NSNP-1)).GT.
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:(10.**20)) THEN
507 WRITE(6,509)
508 WRITE(30,509)
509 FORMAT( iX, 'SOLUTION PROCESS DIVERGES.')
510 ELSE
511 WRITE(6,520) ITER,NEL
515 WRITE(30,520) ITER,NEL
520 FORMAT(1X,'CONVERGENCE OBTAINED AFTER ',13,' ITERATIONS USING '

:13,' ELEMENTS.',/)
525 ENDIF
530 RETURN
540 END
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c
C * SUBROUTINE CLEXTA *
C *
C * THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=3X**2, FOR *
C * MAIN PROGRAM NU2KA AT THE SPECIFIED NODAL POINTS. *

100 SUBROUTINE CLEXTA
110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100),COORD(100) ,ELEN,CONV,ELTIMEULBC,URBC,
:TLEN,ICORR( 100,2), ITYPE,NEL,NSNP

130 DO 150 NN = 1,NSNP
140 UEXT(NN) = 3.*COORD(NN)**2
150 CONTINUE
160 RETURN
170 END
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C * PROGRAM NU2KB *
C * THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL *
C * EQUATION: *
C * U" + U**2 = 60X + 100X**6; UEXACT-IOX**3 WITH VARIABLE *
C * DOMAIN BY LINEARIZING THE U**2 TERM AS USTAR*U AND KEEPING IT *
C * ON THE LEFT SIDE OF THE EQUATION. THE USER SELECTS: *
C * 1) NUMBER OF ELEMENTS *
C * 2) SIZE OF DOMAIN *
C * 3) X AND U(X) AT THE LEFT BOUNDARY *
C * 4) U(X) OR U'(X) AT THE RIGHT BOUNDARY *
C * 5) ITERATION STRATEGY FOR DETERMINING U* *
C * 6) APPROXIMATION TECHNIQUE FOR THE EXCITATION INTEGRAL *

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
:UEXT( 100),UDIF( 100),COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR(100,2),ITYPE,NEL,NSNP

115 CONV=. 0001

C READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

C CALCULATE NUMBER OF NODAL POINTS

135 NSNP=NEL+1

C DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN--TLEN/FLOAT(NEL)

C ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
C EACH NODE

160 DO 169 IEL=1,NEL
162 ICORR( IEL, 1)=IEL
163 ICORR( IEL,2)=IEL+I
164 COORD(IEL+1)=COORD(IEL)+ELEN
169 CONTINUE

C CALL SUBROUTINE NU2KBM TO CREATE A MATRIX AND F VECTOR

170 CALL NU2KBM

C CALL SUBROUTINE NU2KBI TO PERFORM SOLUTION ITERATION

180 CALL NU2KBI(IET)

C CALL SUBROUTINE CLEXTB TO COMPUTE EXACT SOLUTION U=3X*2

190 CALL CLEXTB

C CALL SUBROUTINE CLOTPT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY
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200 CALL CLOTPT(CPUSTAR,IET)
210 END
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C ~.AA~ .AA.A.A.

C *SUBROUTINE NU2KBM
C **
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND F VECTOR FOR MAIN *

C * PROGRAM NU2KB.*

100 SUBROUTINE NIJ2KBM
110 COMMON AC100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

UEXT( 100) ,UDIF( 100) ,COORD( 100) ,ELEN,CObN,ELTIME,ULBC,URBC,
TLEN,ICORR( 100,2) ,ITYPE,NEL,NSNP

120 DIMENSION AE(2,2), FS1E(2), FS2E(2)

C ZERO OUT A MATRIX AND ALL VECTORS

140 DO 210 IZ = 1,NSNP
150 FS(IZ) = 0.
154 U(IZ) =SQRT(60.*COORD(IZ) + 100.*COORD(IZ)**6)
156 UOLD(IZ)=0.
160 DO 200 JZ = 1,NSNP
170 ACIZ,JZ) = 0.
175 B(IZJZ) = 0.
176 CCIZ,JZ) = 0.
200 CONTINUE
210 CONTINUE

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

213 ALPHA=0.
215 DO 375 IELI1,NEL
220 AE(1,1)1l./ELEN
230 AE(1,2)=(-l. /ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(l,1)
260 FS1E(1)=30.*ALPHA*ELEN + 10.*ELEN**2
270 FS1E(2)=30.*ALPHA*ELEN + 20. *ELEN**2
272 F1=50. *(ALPHA**6)*ELEN
274 F2=100. *(ALPHA**5)*(ELEN**2)
276 F3=125. *(ALIJA**4)*(ELEN**3)
278 F4=100. *(ALPHA**3)*(ELEN**4)
280 FS=50. *(ALPHA**2)*(ELEN**5)
281 F6=100. *APH*(ELEN**6)/7.
282 F7=25. *(ELEN**7)/16 *-
287 FS2E(1)=F1 + F2 + F3 + F4 + F5 + F6 + F7
290 FS2E(2)=F1 + 2.*F2 + 3.*F3 + 4.*F4 + 5.*F5 +6.*F6 +7*F7
300 DO 370 II=1,2
310 DO 350 JJ=1,2
320 IN=ICORR( IEL, II)
330 JN=ICORR( IEL,JJ)
340 ACIN,JN)=A(IN,JN) - AE(II,JJ)
350 CONTINUE
360 FS(IN)=FS1E(II) + FS2E(II) + FS(IN)
370 CONTINUE
372 ALPHA-ALPHA + ELEN
375 CONTINUE
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420 RETURN
430 END
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C * SUBROUTINE NU2KBI *
C * *
C * THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *
C * MAIN PROGRAM NU2KA. *
C **A-*

100 SUBROUTINE NU2KBI(IET)
102 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100),COORD( 100),ELEN,CONV,ELTIME ,ULBC ,URBC,
:TLEN,ICORR( 100,2),ITYPE,NEL,NSNP

104 DIMENSION WKAREA(40600), DIF(100), BE(2,2), USTAR(100), FT(100)

C SELECT METHOD OF DETERMINING USTAR

105 PRINT*,'SELECT METHOD OF U* DETERMINATION.'
106 PRINT*,'1: U* = U'
107 PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
108 PRINT*,'3: U* = WEIGHTED AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,*) METHU
110 IF (METHU.EQ.3) THEN
il PRINT*,'CHOOSE WEIGHTING VALUES A AND B'
112 READ(6,*) AW,BW
113 ELSE
114 CONTINUE
115 ENDIF

C SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

116 PRINT*,'SELECT METHOD OF DETERMINING UNSTEADY B MATRIX.'
117 PRINT*,'I: MIDPOINT APPROXIMATION FOR U OVER THE ELEMENT.'
119 PRINT*,'2: U LINEARIZED OVER THE LENGTH OF THE ELEMENT.'
120 READ(6,*) METHBM

C CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS

121 CALL SETIME

C BEGIN ITERATION PROCESS

122 DO 450 ITER-1,200

C DETERMINE VALUE OF U* AT EACH NODE

130 DO 138 IU=I,NSNP
131 IF (METHU.EQ.1) THEN
132 USTAR( IU)=U(IU)
133 ELSEIF (METHU.EQ.2) THEN
134 USTAR( IU)=(U(IU)+UOLD(IU) )/2.
135 ELSE
136 USTAR(IU)=(AW*U( IU)+BW*UOLD(IU) )/(AW+BW)
137 ENDIF
138 CONTINUE

C DETERMINE UNSTEADY ELEMENT B MATRIX
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140 DO 210 IEL=1l,NEL
145 IF (METhEBM. EQ. 1) THEN
146 BE(i, 1)=(ELEN/6. )*CUSTARCIEL)+USTAR(IEL+1))
147 BEC1,2)=(ELEN/ 12. )*(USTARCIEL)+USTARCIEL+1))
148 BE(2,1)=BE(1,2)
149 BEC2,2)=BEC1,1)
150 ELSE
151 BE(1,1)=(ELEN/12. )*(3.*USTAR(IEL) + USTAR(IEL+1))
152 BEC1,2)=(ELEN/12. )*(USTARCIEL) + USTAR(IEL+1))
153 BE(2,1)=BE(1,2)
154 BE(2,2)=(ELEN/12. )*(USTARCIEL) + 3.*USTAR(IEL+1))
156 ENDIF
170 DO 200 11=1,2

4175 DO 195 JJ=1,2
180 IN=ICORR( IEL, II)
185 JN=ICORR( IEL,JJ)
190 B(IN,JN)=BECII,JJ) + BCIN,JN)
195 CONTINUE
200 CONTINUE
210 CONTINUE

C DETERMINE TOTAL SYSTEM MATRIX

220 DO 240 1P=1,NSNP
221 DO 232 JP=1,NSNP
230 C(IP,JP)=A(IP,JP)+BCIP,JP)

C RESET B MATRIX TO ZERO AND LET UOLD=J AND FT-FS

231 BCIP,JP)=O.
232 CONTINUE
235 UOLD(IP)=U(IP)
236 FTC IP)=FS( IP)
240 CONTINUE

C IMPOSE BOUNDARY CONDITIONS

241 C(1,1)1l.
242 C(1,2)=O.
243 FT(1)=ULBC
244 IF (ITYPE. EQ. 1) THEN
245 C(NSNP,NSNP-1)=O.
246 C(NSNP,NSNP)1l.
247 FTC NSNP)=URBC
248 ELSE

*249 FT(NSNP)=FT(NSNP)-URBC
250 ENDIF
255 M1l
260 IDGT-3
270 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(C,M,NSNP,IQ,FT,IDGT,WKAREA,IER)

290 DO 310 NEW=1,NSNP
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300 U(NEW)=FT(NEW)

C WRITE(*,*) 'UNEW=',U(NE.W)fi

C TEST FOR CONVERGENCE

306 DIF(NEW)=ABS(U( NEW) -UOLD( NEW))
310 CONTINUE
320 DIFMAX=DIF(1)
325 NMAX=l
330 DO 390 IJ=1,NEL
340 IF (DIF(IJ+1). GE. DIF(IJ)) THEN
350 DIFMAX=-DIFC IJ+1)
355 NMAX=IJ+l
360 ELSE
370 CONTINUE
380 ENDIF
390 CONTINUE
405 IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
410 GO TO 460
420 ELSE
430 CONTINUE
440 ENDIF
450 CONTINUE
460 CONTINUE

C CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS

461 CALL GETIME(IET)

C OUTPUT HEADER INFORMATION

462 WRITE(6,464)
463 WRITE(30,464)
464 FORMAT(1X,'EQUATION: U" + U**2 = 60X + 100X**6')
465 IF (ITYPE. EQ. 1) THEN
466 WRITE(6,468) COORD(1) ,ULBC,COORD(NSNP) ,URBC
467 WRITE(30,468) COORD(1),ULBC,COORD(NSNP),URBC
468 FORMAT(1X,'B.C.: U(',F2.0,')=&,F3.0,'; U(',F2.0,')=',F5.0,/)
469 ELSE
470 WRITEC 6,472) COORD(1) ,ULDC,COORI)(NSNP) ,URBC
471 WRITE(30,472) COORD(1) ULBC,COORD(NSNP),URBC
472 FORMAT(1X,'B.C.: U(',F2.0,')=',F3.O,';DU/DX(',F2.0,')=',F5.0,/)
473 ENDIF
475 IF (METHU. EQ. 1) THEN
476 WRITE(6,478)
477 WRITE(30,478)
478 FORMAT(IX,'ITERATION METHOD: U*41U',
479 ELSEIF (METHU.EQ.2) THEN
480 WRITE(6,482)
481 WRITE(30,482)
482 FORMAT( iX, 'ITERATION METHOD: U*=(U+UOLD)/2',/)
483 ELSE
484 WRITE(6,486)AW,BW,AW,BW
485 WRITE(30,486)AW,BW,AW,BW
486 FORMAT(1X,'ITERATION METHOD: U*=(' ,F3.0,'*U +',F3.0,'*UOLD)/(',
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:F3.0,'+' ,F3.0,')' ,/)
487 ENDIF
488 IF (METHBM. EQ. 1) THEN
489 WRITE(6,491)
490 WRITE(30,491)
491 FORMAT(1X,'METHOD OF B MATRIX INTEGRAL EVALUATION: MIDPOINT',/)
496 ELSE
497 WRITE(6,499)
498 WRITE(30,499)
499 FORMAT( 1X, 'METHOD OF B MATRIX INTEGRAL EVALUATION: LINEAR' ,/)
500 ENDIF
502 IF (ITER.GE.200) THEN
503 WRITE(6,505)
504 WRITE(30,505)
505 FORMAT(lX, 'CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
506 ELSEIF (ABS(U(NMAX)).GT. (10. **20).OR. ABS(U(NSNP-1)).GT.

:(10.**20)) THEN
507 WRITE(6,509)
508 WRITE(30,509)
509 FORMAT(1X,'SOLUTION PROCESS DIVERGES.')
510 ELSE
511 WRITE(6,520) ITER,NEL
515 WRITE(30,520) ITER,NEL
520 FORMAT(lX,'CONVERGENCE OBTAINED AFTER ',13,' ITERATIONS USING

:13,' ELEMENTS.',/)
525 ENDIF
530 RETURN
540 END
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C * SUBROUTINE CLEXTB *
C * *
C * THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=10X**3, FOR *
C * MAIN PROGRAM NU2KB AT THE SPECIFIED NODAL POINTS. *
C

100 SUBROUTINE CLEXTB
110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100),COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR(100,2),ITYPE,NEL,NSNP

130 DO 150 NN = 1,NSNP
140 UEXT(NN) = 10.*COORD(NN)**3
150 CONTINUE
160 RETURN
170 END
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C
C * SUBROUTINE CLOTPT *
C * THIS SUBROUTINE COMPUTES THE PER CENT ERROR BETWEEI: THE EXACT *
C * AND FEM SOLUTIONS, CPU* FOR THE ITERATION PROCESS, AND PRINTS *
C * OUT ALL DATA IN TABULAR FORM FOR MAIN PROGRAMS NU2KA & NU2KB. *

100 SUBROUTINE CLOTPT(CPUSTAR,IET)
110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT( 100),UDIF(100) ,COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:TLEN,ICORR( 100,2),ITYPE,NEL,NSNP

115 SUMDIF=0.

C CALCULATE PER CENT ERROR AT EACH NODE AND SUM THE ABSOLUTE VALUE
C OF ALL THE ERRORS

120 DO 150 IK=2,NSNP
130 UDIF(IK)=100. *(U(IK)-UEXT(IK))/UEXT(IK)
140 SUMDIF=SUMDIF + ABS(UDIF(IK))
150 CONTINUE
160 UDIF(1)=U(1)-UEXT(1)

C COMPUTE THE ELAPSED TIME OF THE ITERATION PROCESS

164 ELTIME=IET*. 000026
165 WRITE(6,169) ELTIME
166 WRITE(30,169)ELTIME
169 FORMAT(1X,'ELAPSED TIME FOR THE ITERATION PROCESS IS ',F9.4,

' SECONDS.')

C OUTPUT DATA IN TABULAR FORMAT

170 WRITE(6,180)
175 WRITE(30,180)
180 FORMAT(/,1X, X-COORD',3X,'U EXACT' ,3X,'U FEM',7X,'% DIFF')
190 WRITE(6,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
195 WRITE(30,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=1,NSNP)
200 FORMAT(/,2X,FS.3,4X,F9.4,3X,F9.4,4X,F. 1)

C CALCULATE CPU* FOR THE ITERATION PROCESS

205 CPUSTAR=ELTIME*SUMDIF/NSNP
210 WRITE(6,220) CPUSTAR
215 WRITE(30,220? CPUSTAR
220 FORMAT(/,1X, CPU* FOR THE ITERATION PROCESS IS ',F9.4,' SECONDS.')
230 RETURN
240 END
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APPENDIX G. PROGRAM LISTINGS FOR QUASILINEARIZATION

C * PROGRAM NU2QA *
C * THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL *
C * EQUATION: *
C * U" - U**2 = 6 - 9X**4; UEXACT=-3X**2 WITH VARIABLE DOMAIN *
C * BY THE PROCESS OF QUASILINEARIZATION. THE USER SELECTS: *
C * 1) NUMBER OF ELEMENTS *
C * 2) SIZE OF DOMAIN *
C * 3) X AND U(X) AT THE LEFT BOUNDARY *
C * 4) U(X) OR U'(X) AT THE RIGHT BOUNDARY *
C * 5) ITERATION STRATEGY FOR DETERMINING U* *
C * 6) INTERPOLATION STRATEGY FOR THE B MATRIX INTEGRAL *
C * 7) INTERPOLATION STRATEGY FOR THE EXCITATION INTEGRAL *
C

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
:UEXT( 100), UDIF( 100),COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:ICORR(100,2),ITYPE,NEL,NSNP

115 CONV=. 0001

C READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1) ,ULBC,ITYPE,URBC

C CALCULATE NUMBER OF NODAL POINTS

135 NSNP=-NEL+'-

C DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN--TLEN/FLOAT(NEL)

C ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
C EACH NODE

160 DO 169 IEL=1,NEL
162 ICORR(IEL,1)=IEL
163 ICORR( IEL, 2)=IEL+1
164 COORD( IEL+1)=COORD( IEL)+ELEN
169 CONTINUE

C CALL SUBROUTINE NU2QAM TO CREATE A MATRIX AND F VECTOR

170 CALL NU2QAM

C CALL SUBROUTINE NU2QAI TO PERFORM SOLUTION ITERATION

180 CALL NU2QAI(IET)

C CALL SUBROUTINE QLEXTA TO COMPUTE EXACT SOLUTION U=3X**2
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190 CALL QLEXTA

C CALL SUBROUTINE QLOTPT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY

200 CALL QLOTPT(CPUSTAR,IET)

210 END
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C
C *SUBROUTINE NU2QAM*
C **
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND STEADY F VECTOR FOR*
C * MAIN PROGRAM NU2QA.
c.......

100 SUBROUTINE NU2QAM
110 COMMON AC100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

UEXT( 100) ,UDIFC 100) ,COORD( 100) ,ELEN,CONV,ELTIME,ULBC,URBC,
ICORR(100,2),ITYPE,NELNSNP

120 DIMENSION AE(2,2), FS1EC2), FS2EC2)

C ZERO OUT A MATRIX AND ALL VECTORS

140 DO 210 IZ = 1,NSNP
150 FS(IZ) = 0.
154 U(IZ) =SQRT(ABS(9.*COORD(IZ)**4-6.))
156 UOLD(IZ)0O.
160 DO 200 JZ = 1,NSNP
170 A(IZ,JZ) = 0.
175 B(IZ,JZ) = 0.
176 C(IZ,JZ) = 0.
200 CONTINUE
210 CONTINUE

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

213 ALPHA=0.
215 DO 375 IEL=1l,NEL
220 AE(1,1)=1./ELEN
230 AE(1,2)=(-1. /ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(1,1)
260 FS1E( 1)=3. *ELEN
270 FS1E(2)=FSlE(1)
272 F1=( ALPHA**4 )*EIENI2.
274 F2=2. *(ALPHA**3)*(ELN**2)/3.
276 F3=(ALPHA**2)*(ELEN**3)/2.
278 F4=ALPHA*(ELEN**4)/5.
280 F5=(ELEN**5)/30.
287 FS2E(1)=(-9. )*(F1 + F2 + F1 + F4 + 'r5)
290 FS2E(2)C(-9)*(F1 + 2.*F2 + 3.*F3 + 4.*F4 + 5.*F5)
300 DO 370 I1=1,2
310 DO 350 JJ=1,2
320 IN=ICORR(IEL,II)
330 JN=-ICORR(IEL,JJ)
340 A(IN,JN)=A(IN,JN) - AE(II,JJ)
350 CONTINUE
360 FS(IN)=FS1E(II) + FS2E(II) + FS(IN)
370 CONTINUE
372 ALPHA=ALPHA + ELEN
375 CONTINUE
420 RETURN
430 END
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C
C * SUBROUTINE NU2QAI *
C *
C * THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *
C * MAIN PROGRAM NU2QA. *

100 SUBROUTINE NU2QAI(lET)
102 COMMON A(100,100),FS(100),B(100,100),C(100,100).U(100),UOLD(100),

:UEXT(100) ,UDIF( 100) ,COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
:ICORR(100,2),ITYPE,NEL,NSNP

104 DIMENSION WKAREA(40600), DIF(100), BE(2,2), USTAR(100), FT(100),
:FUE(2) ,FU(100)

C SELECT METHOD OF DETERMINING USTAR

105 PRINT*,'SELECT METHOD OF U* DETERMINATION.'
106 PRINT*,'i: U* = U'
107 PRINT*,'2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
108 PRINT*,'3: U* = WEIGHTED AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,*) METHU
110 IF (METHU.EQ.3) THEN
111 PRINT*,'CHOOSE WEIGHTING VALUES A AND B'
112 READ(6,*) AW,BW
113 ELSE
114 CONTINUE
115 ENDIF

C SELECT METHOD OF DETERMINING UNSTEADY B MATRIX

116 PRINT*, 'SELECT METHOD OF DETERMINING UNSTEADY B MATRIX.'
117 PRINT*,'I: MIDPOINT APPROXIMATION FOR U OVER THE ELEMENT.'
119 PRINT*,'2: U LINEARIZED OVER THE LENGTH OF THE ELEMENT.'
120 READ(6,*) METHBM

C SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

121 PRINT*, 'SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR.'
122 PRINT*,'1: MIDPOINT APPROXIMATION'
123 PRINT*,'2: 1/4 - 3/4 APPROXIMATION'
124 PRINT*, '3: LINEAR'
125 READ(6,*) METHFU

C CALL SUBROUTINE SETIME TO BEGIN TIMING ITERATION PROCESS

127 CALL SETIME

C BEGIN ITERATION PROCESS

128 DO 450 ITER=1,200

C DETERMINE VALUE OF U* AT EACH NODE AND SET VALUE OF UNSTEADY
C FORCE VECTOR TO ZERO

129 DO 138 IU=1,NSNP
130 FU(IU)=O.
131 IF (METHU.EQ.1) THEN
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132 USTAR( IU)=U( IU)
133 ELSEIF (METHU.EQ.2) THEN
134 USTAR( IU)=(U( IU)+UOLD( IU) )/2.
135 ELSE
136 USTAR( IU)=(AW*U( IU)+BW*UOLD( IU) )/(AW+BW)
137 ENDIF
138 CONTINUE

C DETERMINE UNSTEADY ELEMENT B MATRIX

140 DO 210 IEL=1,NEL
145 IF (METHBM.EQ.1) THEN
146 BE(1,1)=(ELEN/3. )*(USTAR(IEL)+USTAR(IEL+1))
147 BE(1,2)=(ELEN/6. )*(USTAR(IEL)+USTAR(IEL+1))
148 BE(2,1)=BE(1,2)
149 BE(2,2)=BE(l,1)
150 ELSE
151 BE(1,1)=(ELEN/6. )*(3.*USTAR(IEL) + USTAR(IEL+1))
152 BE(1,2)=(ELEN/6. )*(USTAR(IEL) + USTAR(IEL+1))
153 BE(2,1)=BE(1,2)
154 BE(2,2)=(ELEN/6. )*(USTAR(IEL) + 3.*USTAR(IEL+1))
156 ENDIF

C DETERMINE SYSTEM B MATRIX BY DISTRIBUTING ELEMENT B MATRICES
C ACCORDING TO THE LOCAL TO GLOBAL CORRESPONDENCE

157 DO 163 I1=1,2
158 DO 162 JJ=1,2
159 IN=ICORR( IEL,II)
160 JN=ICORR( IEL,JJ)
161 B(IN,JN)=BECII,JJ) + B(IN,JTN)
162 CONTINUE
163 CONTINUE

C DETERMINE UNSTEADY ELEMENT FORCE VECTOR

165 IF (METHFU. EQ. 1) THEN
166 FUE( 1)=(ELEN/2. )*C(USTARIEL)+USTARIEL+1))/2. )**2
167 FUE(2)=FTJE(1)
169 ELSEIF (METHFU.EQ.2) THEN
171 FUEC 1)=(ELEN/2. )*(3. *USTA(IEL)/4. + USTAR(IEL+1)/4. )**2
172 FUEC2)=(ELEN/2. )*(USTAR(IEL)/4. + 3.*USTARCIEL+1)/4. )**2
173 ELSE
174 FUE(1)=ELEN*(USTAR( IEL)**2/4. +USTARC IEL)*USTAR( IEL+1)/6.

+ USTAR(IEL+1)**2/12.)
175 FUEC 2)=ELEN*(USTAR( IEL)**2/12. + USTAR( IEL)*USTARC IEL+1)/6.

+ USTAR(IEL+1)**2/4.)
176 ENDIF

C DETERMINE UNSTEADY SYSTEM FORCE VECTOR BY DISTRIBUTING ELEMENTAL
C FORCE VECTORS ACCORDING TO THE LOCAL TO GLOBAL CORRESPONDENCE

177 DO 180 II=1,2
178 IN-ICORR(IEL,II)
179 FUIN)=FUE(II) + FUCIN)
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180 CONTINUE

210 CONTINUE

C DETERMINE TOTAL SYSTEM MA-RIX

220 DO 240 IP=-I,NSNP
221 DO 232 JP=1,NSNP
230 C(IP,JP)=A(IP,JP)-B(IP,JP)

C RESET B MATRIX TO ZERO

231 B(IP,JP)=0.
232 CONTINUE

C UPDATE VALUE OF U AT THE PREVIOUS ITERATION

235 UOLD(IP)=U(IP)

C DETERMINE TOTAL SYSTEM FORCE VECTOR

236 FT(IP)=FS( IP) -FU(IP)
240 CONTINUE

C IMPOSE BOUNDARY CONDITIONS

241 C(1,1)=1.
242 C(1,2)=0.
243 FT(1)=ULBC
244 IF (ITYPE. EQ. 1) THEN
245 C(NSNPNSNP-1)=O.
246 C(NSNP,NSNP)=1.
247 FT(NSNP)=URBC
248 ELSE
249 FT(NSNP)=FT(NSNP)-URBC
250 ENDIF
255 M=1
260 IDGT=3
270 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(C,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
290 DO 310 NEW=1,NSNP
300 U(NEW)=FT(NEW)
C WRITE(*,*) 'UNEW=',U(NEW)

C TEST FOR CONVERGENCE

306 DIF(NEW)=ABS(U(NEW)-UOLD(NEW))
310 CONTINUE
320 DIFMAX--DIF(1)
325 NMAX=1
330 DO 390 IJ=INEL
340 IF (DIF(IJ+1).GE.DIF(IJ)) THEN
350 DIFMAXDIF(IJ+l)
355 NMAX=IJ+1
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360 ELSE
370 CONTINUE
380 ENDIF
390 CONTINUE
400 IF (U(NMAX).EQ.0.) GO TO 450
405 IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
410 GO TO 460
420 ELSE
430 CONTINUE
440 ENDIF
450 CONTINUE
460 CONTINUE

C CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS

461 CALL GETIMEC lET)

C OUTPUT HEADER INFORMATION

462 WRITE(6,464)
463 WRITE(30,464)
464 FORMAT(1X,'EQUATION: U" - U**2 = 6 - 9X**4')
465 IF (ITYPE.EQ.1) THEN
466 WRITE(6,468) COORD(1) ,ULBC,COORD(NSNP) ,URBC
467 WRITE(30,468) COORD(1),ULBC3COORD(NSNP),URBC
468 FORMAT(1X,'B.C.: U(',F2.O,')=',F2.O,'; U(',F2.0,')=',F4.0)/)
469 ELSE
470 WRITE(6,472) COORD(1),ULBC,COORD(NSNP),URBC
471 WRITE(30,472) COORD(l),ULBC,COORD(NSNP),URBC
472 FORMAT(1X,'B.C.: U(',F2.O,')=&,F2.0,';DU/DX(',F2.0,')=,F4.0,/)
473 ENDIF
475 IF (METHU.EQ.1) THEN
476 WRITE(6,478)
477 WrRITE(30,478)
478 FORMAT(lX,'ITERATION METHOD: U*-U',/)
479 ELSEIF (METHU.EQ.2) THEN
480 WRITE(6,482)
481 WRITE(30,482)
482 FORMAT( iX,' ITERATION METHOD: U*-(U+UOLD)/2',/)
483 ELSE
484 WRITE(6,486)AW,BW,AW,BW
485 WRITE(30,486)AW,BW,AW,BW
486 FORMAT(lX,' ITERATION METHOD: U*=-(' ,F4. 1,'*U +' ,F4. 1,'*UOLD)/(',

487 ENDIF
488 IF (METHBM. EQ. 1) THEN
489 WRITE(6,491)
490 WRITE(30,491)
491 FORMAT(lX,'METHOD OF B MATRIX INTEGRAL EVALUATION: MIDPOINT' ,/)
496 ELSE
497 WRITE(6,499)
498 WRITE(30,499)
499 FORMAT(1X,'METHOD OF B MATRIX INTEGRAL EVALUATION: LINEAR',/)
500 ENDIF
501 IF (METRFU. EQ. 1) THEN
502 WRITE(6,504)
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503 WRITE(30,504)
504 FORMAT(IX,'METHOD OF EXCITATION INTEGRAL EVALUATION: MIDPOINT',/)
505 ELSEIF (METHFU.EQ.2) THEN
506 WRITE(6,508)
507 WRITE(30,508)
508 FORMAT(1X,'ETHOD OF EXCITATION INTEGRAL EVALUATION: 1/4-3/4',/)
509 ELSE
510 WRITE(6,512)
511 WRITE(30,512)
512 FORMAT(IX,''METHOD OF EXCITATION INTEGRAL EVALUATION: LINEAR',/)
513 ENDIF
515 IF (ITER.GE.200) THEN
516 WRITE(6,518)
517 WRITE(30,518)
518 FORMAT(1X,'CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
519 ELSEIF (ABS(U(NMAX)).GT.(10.**20).OR.ABS(U(NSNP-1)).GT.

:(10.**20)) THEN
520 WRITE(6,522)
521 WRITE(30,522)
522 FORMAT( 1X, 'SOLUTION PROCESS DIVERGES.')
523 ELSE
524 WRITE(6,526) ITER,NEL
525 WRITE(30,526) ITER,NEL
526 FORMAT(1X,'CONVERGENCE OBTAINED AFTER ',13,' ITERATIONS USING '

:13,' ELEMENTS. ',/)
530 ENDIF
540 RETURN
550 END
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C * SUBROUTINE QLEXTA *
C * *
C * THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=3X**2, FOR *
C * MAIN PROGRAM NU2QA AT THE SPECIFIED NODAL POINTS. *
c ******A**** .... ..... ~ *

100 SUBROUTINE QLEXTA
110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT( 100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
:ICORR(100,2),ITYPE,NEL,NSNP

130 DO 150 NN = 1,NSNP
140 UEXT(NN) = 3.*COORD(NN)**2
150 CONTINUE
160 RETURN
170 END
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C *****--*-************* **********************,*'**'***
C * PROGRAM NU2QB *
C * THIS PROGRAM SOLVES THE NONLINEAR SECOND ORDER DIFFERENTIAL *
C * EQUATION: *
C * U" + U**2 = 60X + 100X**6; UEXACT=10X**3 WITH VARIABLE *
C * DOMAIN BY THE PROCESS OF QUASILINEARIZATION. THE USER SELECTS:*
C * 1) NUMBER OF ELEMENTS *
C * 2) SIZE OF DOMAIN *
C * 3) X AND U(X) AT THE LEFT BOUNDARY *
C * 4) U(X) OR U'(X) AT THE RIGHT BOUNDARY *
c * 5) ITERATION STRATEGY FOR DETERMINING U* *
C * 6) INTERPOLATION STRATEGY FOR THE B MATRIX INTEGRAL *
C * 7) INTERPOLATION STRATEGY FOR THE EXCITATION INTEGRAL *
C .... ...

110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),
:UEXT(100) ,UDIF( 100),COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
:ICORR(100,2),ITYPE,NEL,NSNP

115 CONV=. 0000001

C READ IN PARAMETERS FROM DATA FILE

130 READ(29,*) NEL,TLEN,COORD(1),ULBC,ITYPE,URBC

C CALCULATE NUMBER OF NODAL POINTS

135 NSNP=NEL+1

C DETERMINE ELEMENT SIZE OF EQUAL LENGTHS

137 ELEN--TLEN/FLOAT(NEL)

C ESTABLISH LOCAL TO GLOBAL CORRESPONDENCE AND X COORDINATE OF
C EACH NODE

160 DO 169 IEL=1,NEL
162 ICORR(IEL,1=IEL
163 ICORR(IEL,2)=IEL+1
164 COORD(IEL+1)=COORD(IEL)+ELEN
169 CONTINUE

C CALL SUBROUTINE NU2QBM TO CREATE A MATRIX AND F VECTOR

170 CALL NU2QBM

C CALL SUBROUTINE NU2QBI TO PERFORM SOLUTION ITERATION

180 CALL NU2QBI(IET)

C CALL SUBROUTINE QLEXTB TO COMPUTE EXACT SOLUTION U=3X**2

190 CALL QLEXTB

C CALL SUBROUTINE QLOTPT TO PRINT OUT DATA, COMPUTATIONAL EFFICIENCY
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200 CALL QLOTPT(CPUSTARIET)
210 END

154



c
C *SUBROUTINE NU2QBM*
C **
C * THIS SUBROUTINE COMPUTES THE A MATRIX AND STEADY F VECTOR FOR*

C * MAIN PROGRAM NU2QB.*
C : .

100 SUBROUTINE NU2QBM
110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

UEXT( 100) ,UDIF( 100) ,COORD( 100) ,ELEN,CONV,ELTIME,ULBC,URBC,
ICORR(100,2),ITYPE,NEL,NSNP

120 DIMENSION AE(2,2), FS1E(2), FS2E(2), G1(100), G2(100), G3(100)

C ZERO OUT A MATRIX AND ALL VECTORS

140 DO 210 IZ = 1,NSNP
145 FS(IZ) = 0.
C IF (COORD(IZ).LE. 1.) THEN
C U(IZ)=0.
C ELSE
C G1(IZ) = 60.*COORD(IZ) + 100.*COORD(IZ)**6
C G2(IZ) = 1500.*COORD(IZ)**4/SQRT(G1(IZ))
C G3(IZ) = (60. +600.*COORD(IZ)**5)**2/(4.*GlCIZ)**1.5)
C U(IZ)=SQRT(ABS(G1(IZ)-G2(IZ)+G3(IZ)))
C ENDIF
157 U(IZ) = SQRT(60.*COORD(IZ) + 100.*COORD(IZ)**6)
158 UOLD(IZ)= U(IZ)
160 DO 200 JZ = 1,NSNP
170 ACIZ,JZ) = 0.
175 B(IZ,JZ) = 0.
176 C(IZ,JZ) = 0.
200 CONTINUE
210 CONTINUE

C ELEMENTAL DO LOOP TO DETERMINE A MATRIX AND F VECTOR

214 ALPIIA=0.
215 DO 375 IEL=1,NEL
220 AE(1,1)=1./ELEN
230 AE(1,2)=(-1. /ELEN)
240 AE(2,1)=AE(1,2)
250 AE(2,2)=AE(l,1)
260 FS1E(1)=30.*ALP{A*ELEN + 10.*ELEN**2

4 270 FS1E(2)=30. *ALPJ{A*ELEN + 20. *ELEN**2
272 F1=50. *(ALP){A**6)*ELEN
274 F2=100. *(ALPHA**5)*(ELEN**2)
276 F3=125.*(ALPJ{A**4)*(ELEN**3)
278 F4=100. *(ALPHA**3)*(ELEN**4)
280 F5=50. *(ALPHA**2)*CELEN**5)
281 F6=100. *ALPH*ELEN**6)/7.
282 F7=25. *CELEN**7)/16.
287 FS2E(1)=F1 + F2 + F3 + F4 + F5 + F6 + F7
290 FS2E(2)=F1 + 2.*F2 + 3.*F3 + 4.*F4 + 5.*F5 +6.*F6 +7*F7

300 DO 370 11=1,2
310 DO 350 JJ=1.2
320 IN=ICORR( IEL, II)
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330 JN=ICORR( IEL,JJ)
340 A(IN,JN)=A(IN,JN) - AE"II,JJ)
350 CONTINUE
360 FS(IN)=FS1E(II) + FS2ECII) + FS(IN)
370 CONTINUE
372 ALPHA=ALPHA + ELEN
375 CONTINUE
420 RETURN
430 END
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C
C * SUBROUTINE NU2QBI *
C * *
C * THIS SUBROUTINE PERFORMS THE ITERATIVE SOLUTION PROCESS FOR *
C * MAIN PROGRAM NU2QA. *

100 SUBROUTINE NU2QBI(IET)
102 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100) ,COORD(100) ,ELEN,CONV,ELTIME,ULBC,URBC,
:ICORR(100,2),ITYPE,NEL,NSNP

104 DIMENSION WKAREA(40600), DIF(100), BE(2,2), USTAR(100), FT(100),
:FUE(2) ,FU(100)

C SELECT METHOD OF DETERMINING USTAR

105 PRINT*, 'SELECT METHOD OF U* DETERMINATION.'
106 PRINT*,'1: U* = U'
107 PRINT*, '2: U* = AVERAGE OF LAST TWO COMPUTED VALUES OF U'
108 PRINT*,'3: U* = WEIGHTED AVERAGE OF LAST TWO COMPUTED VALUES OF U'
109 READ(6,*) METHU
110 IF (METHU.EQ.3) THEN
111 PRINT*,'CHOOSE WEIGHTING VALUES A AND B'
112 READ(6,*) AW,BW
113 ELSE
114 CONTINUE
115 ENDIF

C SELECT METHOD OF DETERMINING UNSTEADY B MATRIX

116 PRINT*,'SELECT METHOD OF DETERMINING UNSTEADY B MATRIX.'
117 PRINT*,'I: MIDPOINT APPROXIMATION FOR U OVER THE ELEMENT.'
119 PRINT*,'2: U LINEARIZED OVER THE LENGTH OF THE ELEMENT.'
120 READ(6,*) METHBM

C SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR

121 PRINT*, 'SELECT METHOD OF DETERMINING UNSTEADY FORCE VECTOR.'
122 PRINT*,'1: MIDPOINT APPROXIMATION'
123 PRINT*,'2: 1/4 - 3/4 APPROXIMATION'
124 PRINT*,'3: LINEAR'
125 READ(6,*) METHFU

C CALL SUBRJUTINE SETIME TO BEGIN TIMING ITERATION PROCESS

127 CALL SETIME

C BEGIN ITERATION PROCESS

128 DO 450 ITER=1,200

C DETERMINE VALUE OF U* AT EACH NODE AND SET VALUE OF UNSTEADY
C FORCE VECTOR TO ZERO

129 DO 138 IU=1,NSNP
130 FU(IU)=O.
131 IF (METHU.EQ.1) THEN
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132 USTAR(IU)=U(IU)
133 ELSEIF (METHLJ.EQ.2) THEN
134 USTAR(IU)=(U(IU)+UOLD(IU))/2.
135 ELSE
136 USTAR( IU)=(AW*U( IU)+BW*UOLD( IU) )/(AW+BW)
137 ENDIF
138 CONTINUE

C DETERMINE UNSTEADY ELEMENT B MATRIX

140 DO 210 IEL=1,NEL
145 IF (METHBM. EQ. 1) THEN
146 BE( 1,1)=(ELEN/3. )*(USTAR(IEL)+USTAR(IEL+1))
147 BE '1,2)=(ELEN/6. )*(USTAR(IEL)+USTAR(IEL+1))
148 BE(2,1)=BE(1,2)
149 BE(2,2)=BEC1,1)
150 ELSE
151 BEC1,1)=(ELEN/6. )*(3.*USTAR(IEL) + USTAR(IEL+1))
152 BEC 1,2)=(ELEN/6. )*(USTARCIEL) + USTAR(IEL+1))
153 BE(2,1)=BE(1,2)
154 BEC2,2)=(ELEN/6. )*CUSTARCIEL) + 3.*USTAR(IEL+1))
156 ENDIF

C DETERMINE SYSTEM B MATRIX BY DISTRIBUTING ELEMENT B MATRICES
C ACCORDING TO THE LOCAL TO GLOBAL CORRESPONDENCE

157 DO 163 II=1,2
158 DO 162 JJ=1,2
159 IN=-ICORR(IEL,II)
160 JN=-ICORR( IEL,JJ)
161 B(IN,JN)=BE(II,JJ) + B(IN,JN)
162 CONTINUE
163 CONTINUE

C DETERMINE UNSTEADY ELEMENT FORCE VECTOR

165 IF (METHFU. EQ. 1) THEN
166 FUE( 1)(ELEN/2. )*((USTARCIEL)+USTAR(IEL+1))/2. )**2
167 FUE(2)=FUEC1)
169 ELSEIF (METHFU.EQ.2) THEN
171 FUE(1)=(ELEN/2. )*(3.*USTAR(IEL)/4. + USTAR(IEL+1)/4. )**2
172 FUE(2)=(ELEN/2. )*(USTAR(IEL)14. + 3.*USTAjRCIEL+1)/4. )**2
173 ELSE
174 FUEC 1)=ELEN*(USTAR( IEL)**2/4. 4USTAR( IEL)*USTAR( IEL+1)/6.

* + USTAR -EL+1)**2/12.)
175 FUE(2)=-,EN*(USTARCIEL)**2/12. + USTAR(IEL)*USTARCIEL+1)/6.

* + USTAR(IEL+1)**2/4.)
176 ENDIF

C DETERMINE UNSTEADY SYSTEM FORCE VECTOR BY DISTRIBUTING ELEMENTAL
C FORCE VECTORS ACCORDING TO THE LOCAL TO GLOBAL CORRESPONDENCE

177 DO 180 11=1,2
178 IN=ICORR(IEL,II)
179 FU(IN)=FUE(II) + FUCIN)
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180 CONTINUE

210 CONTINUE

C DETERMINE TOTAL SYSTEM MATRIX

220 DO 240 IP=-I,NSNP
221 DO 232 JP=-1,NSNP
230 C(IP,JP)=A(IP,JP)+B(IP,JP)

C RESET B MATRIX TO ZERO

231 B(IP,JP)=0.
232 CONTINUE

C UPDATE VALUE OF U AT THE PREVIOUS ITERATION

235 UOLD(IP)=U(IP)

C DETERMINE TOTAL SYSTEM FORCE VECTOR

236 FT( IP)=FS(IP)+FU(IP)
240 CONTINUE

C IMPOSE BOUNDARY CONDITIONS

241 C(1,1)=1.
242 C(1,2)=0.
243 FT( 1)=ULBC
244 IF (ITYPE. EQ. 1) THEN
245 C(NSNP,NSNP-1)=0.
246 C(NSNP,NSNP)=l.
247 FT(NSNP)=URBC
248 ELSE
249 FT(NSNP)=FT(NSNP) -URBC
250 ENDIF
257 M=I
260 IDGT=3
270 IQ=100

C CALL SUBROUTINE LEQT2F TO SOLVE SET OF LINEAR ALGEBRAIC EQUATIONS

280 CALL LEQT2F(C,M,NSNP,IQ,FT,IDGT,WKAREA,IER)
290 DO 310 NEW=1,NSNP
300 U(NE)=FT(NW)
C WRITE(*,*) 'UNEW=',U(NEW)

C TEST FOR CONVERGENCE

306 DIF(NEW)=ABS(U(NEW)-UOLD(NEW))
310 CONTINUE
320 DIFMAX=DIF(1)
325 NMAX-1
330 DO 390 IJ=1,NEL
340 IF (DIF(IJ+1).GE.DIF(IJ)) THEN
350 DIFMAX=DIF(IJ+l)
355 NMAX=IJ+1
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360 ELSE
370 CONTINUE
380 ENDIF
390 CONTINUE
405 IF (ABS(DIFMAX/U(NMAX)).LT.CONV) THEN
410 GO TO 460
420 ELSE
430 CONTINUE
440 ENDIF
450 CONTINUE
460 CONTINUE

C CALL SUBROUTINE GETIME TO OBTAIN CPU TIME FOR ITERATION PROCESS

461 CALL GETIMEC lET)

C OUTPUT HEADER INFORMATION

462 WRITE(6,464)
463 WRITE(30,464)
464 FORMAT(1X,'EQUATION: U" + U**2 = 60X + 100X**6')
465 IF ( ITYPE. EQ. 1) THEN
466 WRITE(6,468) COORD(1) ,ULBC,COORD(NSNP) ,URBC
467 WRITE(30,468) COORD(1) ,ULBC,COORD(NSNP) ,URBC
468 FORMAT(1X,'B.C.: UC',F2.0,')=&,F2.0,'; U(',F2.0,')',F5.O,/)
469 ELSE
470 WRITE(6,472) COORD(1) ,ULBC,COORD(NSNP) ,URBC
471 WRITE(30,472) COORD(1),ULBC,COORD(NSNP),URBC
472 FORMAT(1X,'B.C.: U(',F2.O,')=',F2.O,';DU/DX(',F2.0,')=&,F4.0,/)
473 ENDIF
475 IF (METHrJ.EQ.1) THEN
476 WRITE(6,478)
477 WRITE(30,478)
478 FORMAT(1X,'ITERATION METHOD: U*=U',/)
479 ELSEIF (METHU.EQ.2) THEN
480 WRITE(6,482)
481 WRITE( 30,482)
482 FORMAT( iX,' ITERATION METHOD: U*=-(U+UOLD)/2' 1/)

483 ELSE
484 WRITE(6,486)AW,BW,AW,BW
485 WRITE(30,486)AW,BW,AW,BW
486 FORMAT(lX,'ITERATION METHOD: U*-(' ,F4. 1,'*U +I ,F4. 1,'*UOLD)/(',

487 ENDIF
488 IF (METHBM. EQ. 1) THEN
489 WRITE(6,491)
490 WRITE(30,491)
491 FORMAT(1X,'METHOD OF B MATRIX INTEGRAL EVALUATION: MIDPOINT',/)
496 ELSE
497 WRITE(6,499)
498 WRITE(30,499)
499 FORMAT(1X,'METHOD OF B MATRIX INTEGRAL EVALUATION: LINEAR',/)
500 ENDIF
501 IF (METHFU.EQ.1) THEN
502 WRITE(6,504)
503 WRITE(30,504)
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504 FORMAT(IX, 'METHOD OF EXCTTATION INTEGRAL EVALUATION: MIDPOINT',/)
505 ELSEIF (METHFU. EQ. 2) THE
506 WRITE(6,508)
507 WRITE(30,508)
508 FORMAT(X,'METHOD OF EXCITATION INTEGRAL EVALUATION: 1/4-3/4',/)
509 ELSE
510 WRITE(6,512)
511 WRITE(30,512)
512 FORMAT(1X,'METHOD OF EXCITATION INTEGRAL EVALUATION: LINEAR',/)
513 ENDIF
515 IF (ITER.GE.200) THEN
516 WRITE(6,518)
517 WRITE(30,518)
518 FORMAT(lX,'CONVERGENCE NOT OBTAINED AFTER 200 ITERATIONS.')
519 ELSEIF (ABS(U(NMAX)).GT.(10.**20).OR.ABS(U(NSNP-1)).GT.

:(10.**20)) THEN
520 WRITE(6,522)
521 WRITE(30,522)
522 FORMAT(1X,'SOLUTION PROCESS DIVERGES.')
523 ELSE
524 WRITE(6,526) ITER,NEL
525 WRITE(30,526) ITER,NEL
526 FORMAT(IX,'CONVERGENCE OBTAINED AFTER ',13,' ITERATIONS USING ',

:13,' ELEMENTS.',/)
530 ENDIF
540 RETURN
150 END
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C
C * SUBROUTINE QLEXTB *
C * *
C * THIS SUBROUTINE COMPUTES THE EXACT SOLUTION, U=IOX**3, FOR *
C * MAIN PROGRAM NU2QB AT THE SPECIFIED NODAL POINTS. *
C

100 SUBROUTINE QLEXTB
110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT( 100),UDIF(100),COORD(100),ELEN,CONV,ELTIME,ULBC,URBC,
:ICORR(100,2) ,ITYPE,NEL,NSNP

130 DO 150 NN = 1,NSNP
140 UEXT(NN) = 10.*COORD(NN)**3
150 CONTINUE
160 RETURN
170 END

A
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C
C * SUBROUTINE QLOTPT *
C * THIS SUBROUTINE COMPUTES THE PER CENT ERROR BETWEEN THE EXACT *
C * AND FEM SOLUTIONS, CPU* FOR THE ITERATION PROCESS, AND PRINTS *
C * OUT ALL DATA IN TABULAR FORM FOR MAIN PROGRAM NU2QA AND NU2QB. *

100 SUBROUTINE QLOTPT(CPUSTAR,IET)
110 COMMON A(100,100),FS(100),B(100,100),C(100,100),U(100),UOLD(100),

:UEXT(100) ,UDIF( 100), COORD( 100),ELEN,CONV,ELTIME,ULBC,URBC,
:ICORR(100,2),ITYPE,NEL,NSNP

115 SUMDIF=O.

C CALCULATE PER CENT ERROR AT EACH NODE AND SUM THE ABSOLUTE VALUE
C OF ALL THE ERRORS

120 DO 150 IK=2,NSNP
130 UDIF( IK)=100. *(U(IK) -UEXT(IK) )/UEXT(IK)
140 SUMDIF=SUMDIF + ABS(UDIF(IK))
150 CONTINUE
160 UDIF(1)=U(1)-UEXT(i)

C COMPUTE THE ELAPSED TIME OF THE ITERATION PROCESS

164 ELTIME=IET*. 000026
165 WRITE(6,169) ELTIME
166 WRITE(30,169)ELTIME
169 FORMAT(X,'ELAPSED TIME FOR THE ITERATION PROCESS IS ',F9.4,

' SECONDS. ')

C OUTPUT DATA IN TABULAR FORMAT

170 WRITE(6,180)
175 WRITE(30,180)
180 FORMAT(/,1X, X-COORD',4X,'U EXACT',7X,'U FEM',4X,'% DIFF')
190 WRITE(6,200) (COORD(NP),UEXT(NP),U(NP),UDIF(NP), NP=-I,NSNP)
195 WRITE(30,200) (COORD(NP),UEXT(NP) ,U(NP),UDIF(NP), NP=1,NSNP)
200 FORMAT(/,2X,F5.3,4X,F9.4,3X,F10.4,4X,F. 1)

C CALCULATE CPU* FOR THE ITERATION PROCESS

205 CPUSTAR=ELTIME*SUMDIF/NSNP
210 WRITE(6,220) CPUSTAR
215 WRITE(30,220? CPUSTAR
220 FORMAT(/,1X, CPU* FOR THE ITERATION PROCESS IS ',F9.4,' SECONDS.')
230 RETURN
240 END

163



LIST OF REFERENCES

United States Air Force Project Rand Report R-438-PR, Quasilinearization and

Nonlinear Boundary-value Problems, by R. E. Bellman and R. E. Kalaba, June 1965.

164



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Department Chairman, Code ME
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943

4. Naval Engineerig Cirricular Office, Code 34
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943

5. Professor David Salinas, Code ME/Sa 4
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943

6. Professor Young Kwon, Code ME/Kw
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943

7. Professor Robert E. Newton, Code ME/Ne
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943

8. Commandant (G-PTE-2) 2
U.S. Coast Guard Headquarters
2100 2nd Street S.W.
Washington, D.C. 20593

9. LT Baird S. Ritter, USCG
U.S. Coast Guard Marine Safety Center
400 7th Street S.W.
Washington, D.C. 20590

165


